3,471
Views
34
CrossRef citations to date
0
Altmetric
Report

The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia

, ORCID Icon, , &
Pages 1193-1200 | Received 24 Mar 2017, Accepted 10 Apr 2017, Published online: 19 May 2017

References

  • Manning AL, Dyson NJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer 2012; 12(3):220-6.
  • Abedin, ZR, Z Ma, and EP Reddy. Increased angiogenesis in Cdk4- (R24C/R24C): Apc(+/Min) intestinal tumors. Cell Cycle 2010; 9(12):2456-63; PMID:20603602; https://doi.org/10.4161/cc.9.12.12055
  • Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, Schäfer M, Fajmann S, Schlederer M, Schiefer AI, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 2013 24(2):167-81; PMID:23948297; https://doi.org/10.1016/j.ccr.2013.07.012
  • Handschick K, Beuerlein K, Jurida L, Bartkuhn M, Müller H, Soelch J, Weber A, Dittrich-Breiholz O, Schneider H, Scharfe M, et al. Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression. Mol Cell 2014 ;53(2):193-208; https://doi.org/10.1016/j.molcel.2013.12.002
  • Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, Zirkelbach JF, Yu J, Liu Q, Zhao L, et al. FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Clin Cancer Res 2015; 21(21): 4760-6; PMID:26324739; https://doi.org/10.1158/1078-0432.CCR-15-1185
  • Franco J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget 2014; 5 (15):6512-25; https://doi.org/10.18632/oncotarget.2270
  • Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun SE, Lee W, Lewis J Jr, Trinkaus K, Adkins D. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximabin patients with recurrent/metastatic head and neck squamous cell carcinoma.Oral Oncol. 2016; 58:41-8; https://doi.org/10.1016/j.oraloncology.2016.05.011
  • Tao Z, Le Blanc JM, Wang C, Zhan T, Zhuang H, Wang P, Yuan Z, Lu B. Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.Clin Cancer Res 2016; 22(1):122-33; https://doi.org/10.1158/1078-0432.CCR-15-0589
  • Ziemke EK, Dosch JS, Maust JD, Shettigar A, Sen A, Welling TH, Hardiman KM, Sebolt-Leopold JS. Sensitivity of KRAS Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.Clin Cancer Res 2016; 22(2):405-14; https://doi.org/10.1158/1078-0432.CCR-15-0829
  • Lee MS, Helms TL, Feng N, Gay J, Chang QE, Tian F, Wu JY, Toniatti C, Heffernan TP, Powis G, Kwong LN, Kopetz S. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 2016; 7(26):39595-39608.
  • Yoshida, A., E.K. Lee, and J.A. Diehl, Induction of Therapeutic Senescence in Vemurafenib-Resistant Melanoma by Extended Inhibition of CDK4/6. Cancer Res 2016; 76(10):2990-3002; PMID:26988987; https://doi.org/10.1158/0008-5472.CAN-15-2931
  • Rebucci, M. and C. Michiels, Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 2013; 85(9):1219-26; PMID:23435357; https://doi.org/10.1016/j.bcp.2013.02.017
  • Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I, Semenza GL Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor- 1α to promote cell-cycle progression. Proc Natl Acad Sci U S A 2014; 111(32):E3325-34; https://doi.org/10.1073/pnas.1412840111
  • Flügel D, Görlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor-1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 2007; 27(9):3253-65; https://doi.org/10.1128/MCB.00015-07
  • Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J., MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem, 2003. 278(16): p. 14013-9; PMID:12588875; https://doi.org/10.1074/jbc.M209702200
  • Mayes PA, Dolloff NG, Daniel CJ, Liu JJ, Hart LS, Kuribayashi K, Allen JE, Jee DI, Dorsey JF, Liu YY, et al. Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3β and CDK1. Cancer Res 2011; 71(15):5265-75; https://doi.org/10.1158/0008-5472.CAN-11-1383
  • Warfel NA, Dolloff NG, Dicker DT, Malysz J, El-Deiry WS. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 2013; 12(23):3689-701; https://doi.org/10.4161/cc.26930
  • Gallant JN, Allen JE, Smith CD, Dicker DT, Wang W, Dolloff NG, Navaraj A, El-Deiry WS, Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer. Cancer Biol Ther 2011; 12(3):239-51; PMID:21725213; https://doi.org/10.4161/cbt.12.3.17034
  • Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58(3):621-81; PMID:16968952; https://doi.org/10.1124/pr.58.3.10
  • Matzow T, Cowen RL, Williams KJ, Telfer BA, Flint PJ, Southgate TD, Saunders MP. Hypoxia-targeted over-expression of carboxylesterase as a means of increasing tumour sensitivity toirinotecan (CPT-11). J Gene Med 2007; 9(4):244-52; https://doi.org/10.1002/jgm.1016
  • Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res 2004; 64(4):1475-82; PMID:14983893; https://doi.org/10.1158/0008-5472.CAN-03-3139
  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL, Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3(11):1427-38; PMID:15542782
  • Qin G, Xu F, Qin T, Zheng Q, Shi D, Xia W, Tian Y, Tang Y, Wang J, Xiao X, Deng W, Wang S, Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway. Oncotarget 2015; 6(39):41794-808; PMID:26540629
  • Bollard J, Miguela V, Ruiz de Galarreta M, Venkatesh A, Bian CB, Roberto MP, Tovar V, Sia D, Molina-Sánchez P, Nguyen CB, Nakagawa S, Llovet JM, Hoshida Y, Lujambio A. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut 2016; pii:gutjnl-2016-312268; https://doi.org/10.1136/gutjnl-2016-312268
  • Farhat FS. A general review of the role of irinotecan (CPT11) in the treatment of gastric cancer. Med Oncol 2007; 24 (2):137-46. Review; PMID:17848736; https://doi.org/10.1007/BF02698032
  • Xuan Y, Hur H, Ham IH, Yun J, Lee JY, Shim W, Kim YB, Lee G, Han SU, Cho YK. Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through theregulation of glucose metabolism. Exp Cell Res 2014; 321(2):219-30; https://doi.org/10.1016/j.yexcr.2013.12.009
  • Hoeflich KP1, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. 2000; 406(6791):86-90.
  • Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 2008; 68(16):6643-51; https://doi.org/10.1158/0008-5472.CAN-08-0850
  • Ma C, Bower KA, Chen G, Shi X, Ke ZJ, Luo J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. J Biol Chem 2008; 283(14):9248-56; https://doi.org/10.1074/jbc.M707316200
  • Ye Y, Chao XJ, Wu JF, Cheng BC, Su T, Fu XQ, Li T, Guo H, Tse AK, Kwan HY, Du J, Chou GX, Yu ZL. ERK/GSK3β signaling is involved in atractylenolide I-induced apoptosis and cell cycle arrest in melanomacells. Oncol Rep 2015; 34(3):1543-8.
  • Manohar SM, Padgaonkar AA, Jalota-Badhwar A, Rao SV, Joshi KS. P276 -00, a cyclin-dependent kinase inhibitor, inhibits HIF-1a and induces G2/M arrest under hypoxia in prostate cancer cells. Prostate Cancer Prostatic Dis 2012; 15(1):15-27; PMID:22083267; https://doi.org/10.1038/pcan.2011.51
  • Sun WJ, Huang H, He B, Hu DH, Li PH, Yu YJ, Zhou XH, Lv Z, Zhou L, Hu TY, et al. Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol 2016; 127:90-100. pii: S0006-2952(16)30488-9
  • Wei W, Yu Z, Xie M, Wang W, Luo X. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation. J Mol Neurosci 2017; 61(1):105-114; https://doi.org/10.1007/s12031-016-0844-2
  • Liu W, Ning R, Chen RN, Huang XF, Dai QS, Hu JH, Wang YW, Wu LL, Xiong J, Hu G, et al. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. Mol Carcinog 2016; 55(5):440-57; https://doi.org/10.1002/mc.22293
  • Lv C, Hong Y, Miao L, Li C, Xu G, Wei S, Wang B, Huang C, Jiao B. Wentilactone A as a novel potentia antitumor agent induces apoptosis and G2/M arrest of human lungcarcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis 2013; 4:e952; https://doi.org/10.1038/cddis.2013.484
  • Yin X, Zhang R, Feng C, Zhang J, Liu D, Xu K, Wang X, Zhang S, Li Z, Liu X, Ma H Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathwaysin human esophageal squamous cell carcinoma. Oncol Rep 2014; 32(4):1748-56.
  • Pencreach E, Guérin E, Nicolet C, Lelong-Rebel I, Voegeli AC, Oudet P, Larsen AK, Gaub MP, Guenot D. Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1alpha axis. Clin Cancer Res 2009; 15(4):1297-307; https://doi.org/10.1158/1078-0432.CCR-08-0889
  • Chintala S, Tóth K, Cao S, Durrani FA, Vaughan MM, Jensen RL, Rustum YM. Se-methylselenocysteine sensitizes hypoxic tumor cells to irinotecan by targeting hypoxia-inducible factor1alpha. Cancer Chemother Pharmacol. 2010; 66(5):899-911; https://doi.org/10.1007/s00280-009-1238-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.