1,210
Views
2
CrossRef citations to date
0
Altmetric
Extra View

Effect of TPA and HTLV-1 Tax on BRCA1 and ERE controlled genes expression

, , &
Pages 1336-1344 | Received 29 Mar 2017, Accepted 02 May 2017, Published online: 26 Jun 2017

References

  • Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 2005; 24:5931-7; PMID:16155600; https://doi.org/10.1038/sj.onc.1208981
  • Nagata C, Mizoue T, Tanaka K, Tsuji I, Wakai K, Inoue M, Tsugane S. Tobacco smoking and breast cancer risk: An evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol 2006; 36:387-94; PMID:16766567; https://doi.org/10.1093/jjco/hyl031
  • Shrubsole MJ, Gao YT, Dai Q, Shu XO, Ruan ZX, Jin F, Zheng W. Passive smoking and breast cancer risk among non-smoking Chinese women. Int J Cancer 2004; 110:605-9; PMID:15122595; https://doi.org/10.1002/ijc.20168
  • Coyle YM. The effect of environment on breast cancer risk. Breast Cancer Res Treat 2004; 84:273-88; PMID:15026625; https://doi.org/10.1023/B:BREA.0000019964.33963.09
  • Snedeker SM. Chemical exposures in the workplace: effect on breast cancer risk among women. AAOHN J 2006; 54:270-9; PMID:16800404; https://doi.org/10.1177/216507990605400604
  • Bernstein L, Patel AV, Ursin G, Sullivan-Halley J, Press MF, Deapen D, Berlin JA, Daling JR, McDonald JA, Norman SA, et al. Lifetime recreational exercise activity and breast cancer risk among black women and white women. J Natl Cancer Inst 2005; 97:1671-9; PMID:16288120; https://doi.org/10.1093/jnci/dji374
  • Ganmaa D, Willett WC, Li TY, Feskanich D, van Dam RM, Lopez-Garcia E, Hunter DJ, Holmes MD. Coffee, tea, caffeine and risk of breast cancer: A 22-year follow-up. Int J Cancer 2008; 122:2071-6; PMID:18183588; https://doi.org/10.1002/ijc.23336
  • Dumitrescu RG, Shields PG. The etiology of alcohol-induced breast cancer. Alcohol 2005; 35:213-25; PMID:16054983; https://doi.org/10.1016/j.alcohol.2005.04.005
  • Emery J, Lucassen A, Murphy M. Common hereditary cancers and implications for primary care. The Lancet 2001; 358:56-63; https://doi.org/10.1016/S0140-6736(00)05257-0
  • Sunpaweravong S, Sunpaweravong P. Recent developments in critical genes in the molecular biology of breast cancer. Asian J Surg 2005; 28:71-5; PMID:15691805; https://doi.org/10.1016/S1015-9584(09)60265-7
  • Yarden RI, Papa MZ. BRCA1 at the crossroad of multiple cellular pathways: approaches for therapeutic interventions. Mol Cancer Ther 2006; 5:1396-404; PMID:16818497; https://doi.org/10.1158/1535-7163.MCT-05-0471
  • Rosen EM, Fan S, Isaacs C. BRCA1 in hormonal carcinogenesis: basic and clinical research. Endocr Relat Cancer 2005; 12:533-48; PMID:16172191; https://doi.org/10.1677/erc.1.00972
  • Wu W, Koike A, Takeshita T, Ohta T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div 2008; 3:1-10; PMID:18179693; https://doi.org/10.1186/1747-1028-3-1
  • Deng CX. Roles of BRCA1 in centrosome duplication. Oncogene 2002; 21:6222-7; PMID:12214252; https://doi.org/10.1038/sj.onc.1205713
  • Yun MH, Hiom K. Understanding the functions of BRCA1 in the DNA-damage response. Biochem Soc Trans 2009; 37:597-604; PMID:19442256; https://doi.org/10.1042/BST0370597
  • Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 2005; 3:531-9; PMID:16254187; https://doi.org/10.1158/1541-7786.MCR-05-0192
  • Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 2002; 32:180-4; PMID:12195423; https://doi.org/10.1038/ng953
  • Ye Q, Hu Y-F, Zhong H, Nye AC, Belmont AS, Li R. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 2001; 155:911-22; PMID:11739404; https://doi.org/10.1083/jcb.200108049
  • Xu B, Kim S-T, Kastan MB. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21:3445-50; PMID:11313470; https://doi.org/10.1128/MCB.21.10.3445-3450.2001
  • Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem 2000; 275:33487-96; PMID:10938285; https://doi.org/10.1074/jbc.M005824200
  • Parvin JD. BRCA1 at a branch point. Proc Natl Acad Sci USA 2001; 98:5952-4; PMID:11371630; https://doi.org/10.1073/pnas.121184998
  • Rosen EM, Fan S, Pestell RG, Goldberg ID. BRCA1 gene in breast cancer. J Cell Physiol 2003; 196:19-41; PMID:12767038; https://doi.org/10.1002/jcp.10257
  • Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, Fedele M, Pierantoni G, Croce CM, Fusco A. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 2003; 23:2225-38; PMID:12640109; https://doi.org/10.1128/MCB.23.7.2225-2238.2003
  • Thakur S, Nakamura T, Calin G, Russo A, Tamburrino JF, Shimizu M, Baldassarre G, Battista S, Fusco A, Wassell RP, et al. Regulation of BRCA1 transcription by specific single-stranded DNA binding factors. Mol Cell Biol 2003; 23:3774-87; PMID:12748281; https://doi.org/10.1128/MCB.23.11.3774-3787.2003
  • Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 1999; 18:1957-65; PMID:10208417; https://doi.org/10.1038/sj.onc.1202509
  • Mueller CR, Roskelley CD. Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res 2003; 5:45-52; PMID:12559046; https://doi.org/10.1186/bcr557
  • Taylor J, Lymboura M, Pace PE, A'hern RP, Desai AJ, Shousha S, Coombes RC, Ali S. An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. International Journal of Cancer 1998; 79:334-42; PMID:9699523; https://doi.org/10.1002/(SICI)1097-0215(19980821)79:4<334::AID-IJC5>3.0.CO;2-W
  • Girault I, Bieche I, Lidereau R. Role of estrogen receptor alpha transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas 2006; 54:342-51; PMID:16822624; https://doi.org/10.1016/j.maturitas.2006.06.003
  • Jeffy BD, Hockings JK, Kemp MQ, Morgan SS, Hager JA, Beliakoff J, Whitesell LJ, Bowden GT, Romagnolo DF. An estrogen receptor-α/p300 complex activates the BRCA-1 promoter at an AP-1 site that binds Jun/Fos transcription factors: repressive effects of p53 on BRCA-1 transcription. Neoplasia 2005; 7:873-82; PMID:16229810; https://doi.org/10.1593/neo.05256
  • Marks JR, Huper G, Vaughn JP, Davis PL, Norris J, McDonnell DP, Wiseman RW, Futreal PA, Iglehart JD. BRCA1 expression is not directly responsive to estrogen. Oncogene 1997; 14:115-21; PMID:9010238; https://doi.org/10.1038/sj.onc.1200808
  • Hockings JK, Degner SC, Morgan SS, Kemp MQ, Romagnolo DF. Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res 2008; 10:R29. (31 March 2008); PMID:18377656; https://doi.org/10.1186/bcr1987
  • Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF. The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 2006; 66:2224-32; PMID:16489025; https://doi.org/10.1158/0008-5472.CAN-05-1619
  • Wang W, Schneider-Broussard R, Kumar A, MacLeod M, Johnson D. Regulation of BRCA1 Expression by the Rb-E2F Pathway. J Biol Chem 2000; 275:4532-6; PMID:10660629; https://doi.org/10.1074/jbc.275.6.4532
  • Corkery D, Thillainadesan G, Coughlan N, Mohan RD, Isovic M, Tini M, Torchia J. Regulation of the BRCA1 gene by an SRC3/53BP1 complex. BMC Biochem 2011; 12:50-62; PMID:21914189; https://doi.org/10.1186/1471-2091-12-50
  • Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci 2007; 98:772-8; PMID:17388788; https://doi.org/10.1111/j.1349-7006.2007.00456.x
  • Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 2004; 1:20-43; PMID:15310405; https://doi.org/10.1186/1742-4690-1-20
  • Shukrun M, Jabareen A, Abu-akandil A, Chamias R, Aboud M, Huleihel M. HTLV-1 Tax oncoprotein inhibits the estrogen-induced BRCA1 exprestion through the ERalpha non-convetional transcriptional activation. Plos One 2014; 9(2):e89390; PMID:24586743; https://doi.org/10.1371/journal.pone.0089390
  • Hino S. Milk-borne transmission of HTLV-I as a major route in the endemic cycle. Acta Paediatr Jpn 1989; 31:428-35; PMID:2514566; https://doi.org/10.1111/j.1442-200X.1989.tb01329.x
  • Wiktor SZ, Pate EJ, Rosenberg PS, Barnett M, Palmer P, Medeiros D, Maloney EM, Blattner WA. Mother-to-child transmission of human T-cell lymphotropic virus type I associated with prolonged breast-feeding. J Hum Virol 1997; 1:37-44; PMID:10195229
  • Li HC, Biggar RJ, Miley WJ, Maloney EM, Cranston B, Hanchard B, Hisada M. Provirus load in breast milk and risk of mother-to-child transmission of human T lymphotropic virus type I. J Infect Dis 2004; 190:1275-8; PMID:15346338; https://doi.org/10.1086/423941
  • Ureta-Vidal A, Angelin-Duclos C, Tortevoye P, Murphy E, Lepère JF, Buigues RP, Jolly N, Joubert M, Carles G, Pouliquen JF, et al. Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: implication of high antiviral antibody titer and high proviral load in carrier mothers. Int J Cancer 1999; 82:832-6; PMID:10446450; https://doi.org/10.1002/(SICI)1097-0215(19990909)82:6<832::AID-IJC11>3.0.CO;2-P
  • Southern SO, Southern PJ. Persistent HTLV-I infection of breast luminal epithelial cells: a role in HTLV transmission? Virology 1998; 241:200-14; PMID:9499795; https://doi.org/10.1006/viro.1997.8978
  • LeVasseur RJ, Southern SO, Southern PJ. Mammary epithelial cells support and transfer productive human T-cell lymphotropic virus infections. J Hum Virol 1998; 1:214-23; PMID:10195245
  • Southern S, Southern P. Cellular mechanism for milk-borne transmission of HIV and HTLV. Adv Exp Med Biol 2002; 503:183-90; PMID:12026019
  • Hecker E, Schmidt R. Phorbolesters–the irritants and cocarcinogens of Croton Tiglium L. Fortschr Chem Org Naturst 1974; 31:377-467; PMID:4609865
  • Ito I, Matsuda S, Tokudo H, Nakao Y. Tumor promoting diterpen esters as possible environmental co-factors for ATL. In: R.C. Gallo, ME, L. Gross, ed. Human T-cell leukemia/lymphoma virus and adult T-cell leukemia. New York: Cold Spring Harbor, Cold Spring Harbor, 1984:69-74
  • Jones K. Review of Sangre de Drago (Croton lechleri) - A South American tree sap in the treatment of diarrhea, inflammation, insect bites, viral infections, and wounds: Traditional uses to clinical research. J Alternat Complement Med 2003; 9:877-96; https://doi.org/10.1089/107555303771952235
  • Matsuda S, Nakao Y, Ohigashi H, Koshimizu K, Ito Y. Plant-derived diterpene esters enhance HTLV-I-induced colony formation of lymphocytes in co-culture. Int J Cancer 1986; 38:859-65; PMID:3025104; https://doi.org/10.1002/ijc.2910380613
  • Nakao Y, Matsuda S, Matusi T, Nakagawa T, Fujita T, Uchiyama T, Maeda S, Okamoto Y, Masaoka T, Ito I. Effect of tumor promoters on human T-cell leukemia/lymphoma (HTLV)-structural protein induction in adult T-cell leukemia cells. Cancer Lett 1984; 24:129-39; PMID:6090008; https://doi.org/10.1016/0304-3835(84)90128-9
  • Williams JE. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado. Altern Med Rev 2001; 6:567-79
  • Kim S, Chun S-Y, Kwon Y-S, Nam K-S. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells. Biomed Pharmacother 2016; 77:114-9; https://doi.org/10.1016/j.biopha.2015.12.008
  • Barry OP, Kazanietz MG. Protein kinase C isozymes, novel phorbol ester receptors and cancer chemotherapy. Curr Pharm Design 2001; 7:1725-44; https://doi.org/10.2174/1381612013397041
  • Nakao Y, Matsuda S, Matsui T, Koizumi T, Katakami Y, Fujita T, Y I. Inhibitors of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced multinucleated cell formation and HTLV-I p19 antigen expression in HTLV-I-infected T-cell line KH-2Lo. Int J Cancer 1986; 37:911-7; PMID:3011686; https://doi.org/10.1002/ijc.2910370618
  • Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat Feb 2004; 83:249-89; https://doi.org/10.1023/B:BREA.0000014042.54925.cc
  • Veprik A, Khanin M, Hermoni KL, Danilenko M, Levy Y. Y. S. Polyphenols, isothiocyanates and carotenoid derivatives enhance estrogenic activity in bone cells but inhibit it in breast cancer cells. Am J Physiol Endocrinol Metab 2011: Aug 30. [Epub ahead of print]; PMID:21878663
  • Bartholin L, Guindon S, Martel S, Corbo L, Rimokh R. Identification of NF-κB responsive elements in follistatin related gene (FLRG) promoter. Gene Dev 2007; 393:153-62
  • Mor-Vaknin N, Torgeman A, Galron D, Lochelt M, Flugel RM, Aboud M. The long terminal repeats of human immunodeficiency virus type-1 and human T-cell leukemia virus type-I are activated by 12-O-tetradecanoylphorbol-13-acetate through different pathways. Virology 1997; 232:337-44; PMID:9191847; https://doi.org/10.1006/viro.1997.8566
  • Torgeman A, Mor-Vaknin N, Zelin E, Ben-Aroya Z, Lochelt M, Flugel RM, Aboud M. Sp1-p53 heterocomplex mediates activation of HTLV-I long terminal repeat by 12-O-tetradecanoylphorbol-13-acetate that is antagonized by protein kinase C. Virology 2001; 281:10-20; PMID:11222091; https://doi.org/10.1006/viro.2000.0779
  • Abou-Kandil A, Eisa N, Jabareen A, Huleihel M. Differential effects of HTLV-1 Tax oncoprotein on the different estrogen-induced-ER α-mediated transcriptional activities. Cell Cycle 2016; 15:1208871; https://doi.org/10.1080/15384101.2016.1208871
  • Abou-Kandil A, Chamias R, Huleihel M, Godbey WT, Aboud M. Differential Role of PKC-Induced c-Jun in HTLV-1 LTR Activation by 12-O-Tetradecanoylphorbol-13-acetate in Different Human T-cell Lines. PLoS ONE 2012; 7:e29934; PMID:22299029; https://doi.org/10.1371/journal.pone.0029934
  • Demizu Y, Misawa T, Nagakubo T, Kanda Y, Okuhira K, Sekino Y, Naito M, Kurihara M. Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorg Med Chem 2015; 23:4132-8; https://doi.org/10.1016/j.bmc.2015.06.067
  • Chung M-H, Kim D-H, Na H-K, Kim J-H, Kim H-N, Haegeman G, Surh Y-J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2014; 768:74-83; https://doi.org/10.1016/j.mrfmmm.2014.04.003
  • Tanaka K, Kawakami T, Tateishi K, Yashiroda H, Chiba T. Control of IκBα proteolysis by the ubiquitin-proteasome pathway. Biochimie 2001; 83:351-6; PMID:11295496; https://doi.org/10.1016/S0300-9084(01)01237-8
  • Rauch T, Zhong X, Pfeifer GP, Xingzhi X. 53BP1 is a Positive Regulator of the BRCA1 Promoter. Cell Cycle 2005; 4(8):1078-83; PMID:15970701; https://doi.org/10.4161/cc.4.8.1855
  • Arisawa K, Soda M, M A, Fujiwara S UH, M H, Takeda H, Kashino W, Suyama A. Human T-cell lymphotropic virus type-1 infection and risk of cancer: 15.4 year longitudinal study among atomic bomb survivors in Nagasaki, Japan. Cancer Sci 2006; 97:535-9; PMID:16734733; https://doi.org/10.1111/j.1349-7006.2006.00212.x
  • Nutt JE, Harris AL, Lunec J. Phorbol ester and bryostatin effects on growth and the expression of oestrogen responsive and TGF-beta 1 genes in breast tumour cells. British Journal of Cancer 1991; 64:671-6; PMID:1911215; https://doi.org/10.1038/bjc.1991.379
  • Inadera H. Estrogen-induced genes, WISP-2 and pS2, respond divergently to protein kinase pathway. Biochem Biophys Res Commun 2003; 309:272-8; PMID:12951045; https://doi.org/10.1016/j.bbrc.2003.07.001
  • Beck S, Fegert P, Gott P. Factors regulating pS2-reporter gene expression in MCF-7 breast cancer cell line. Int J Oncol 1997; 10(5):1051-5; PMID:21533484
  • Cho H, Katzenellenbogen BS. Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol 1993; 7(3):441-52; PMID:7683375; https://doi.org/10.1210/mend.7.3.7683375 10.1210/me.7.3.441
  • Martin MB, Garcia-Morales P, Stoica A, Solomon HB, Pierce M, Katz D, Zhang S, Danielsen M, Saceda M. Effects of 12-O-tetradecanoylphorbol-13-acetate on estrogen receptor activity in MCF-7 cells. J Biol Chem 1995; 270(42):25244-51; PMID:7559663; https://doi.org/10.1074/jbc.270.42.25244
  • Weigel NL, Zhang Y. Ligand-independent activation of steroid hormone receptors. J Mol Med (Berl) 1998; 76(7):469-79; PMID:9660165; https://doi.org/10.1007/s001090050241
  • Göttlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med (Berl) 1998; 76(7):480-9; PMID:9660166; https://doi.org/10.1007/s001090050242

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.