1,344
Views
1
CrossRef citations to date
0
Altmetric
Reports

acn-1, a C. elegans homologue of ACE, genetically interacts with the let-7 microRNA and other heterochronic genes

, ORCID Icon & ORCID Icon
Pages 1800-1809 | Received 06 Feb 2017, Accepted 31 May 2017, Published online: 21 Sep 2017

References

  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56:110-56. doi:10.1016/0012-1606(77)90158-0. PMID:838129
  • Slack F, Ruvkun G. Temporal Pattern Formation by Heterochronic Genes. Annu Rev Genet. 1997;31:611-34. doi:10.1146/annurev.genet.31.1.611. PMID:9442909
  • Pasquinelli AE, Ruvkun G. Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol [Internet]. 2002;18:495-513. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12142272. doi:10.1146/annurev.cellbio.18.012502.105832
  • Moss EG. Heterochronic genes and the nature of developmental time. Curr Biol [Internet]. 2007;17:R425-34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17550772. doi:10.1016/j.cub.2007.03.043
  • Ambros V, Horvitz HR. Heterochronic Mutants of the Nematode Caenorhabditis elegans. Science (80- ). 1984;226:409-16. doi:10.1126/science.6494891
  • Nimmo RA, Slack FJ. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma [Internet]. 2009;118:405-18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19340450. doi:10.1007/s00412-009-0210-z
  • Abbott AL, Alvarez-saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 MicroRNA Family Members mir-48 , mir-84 , and mir-241 Function Together to Regulate Developmental Timing in Caenorhabditis elegans. Dev Cell. 2005;9:403-14. doi:10.1016/j.devcel.2005.07.009. PMID:16139228
  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901-6. doi:10.1038/35002607. PMID:10706289
  • Lin S, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, Gottlieb E, Slack FJ. The C . elegans hunchback Homolog , hbl-1 , Controls Temporal Patterning and Is a Probable MicroRNA Target. Dev Cell. 2003;4:639-50. doi:10.1016/S1534-5807(03)00124-2. PMID:12737800
  • Vella MC, Choi E-Y, Lin S-Y, Reinert K, Slack FJ. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev. 2004;18:132-7. doi:10.1101/gad.1165404. PMID:14729570
  • Slack F, Basson M, Liu Z, Ambros V, Horvitz H, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell [Internet]. 2000;5:659-69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10882102. doi:10.1016/S1097-2765(00)80245-2
  • Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, Rougvie AE. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell [Internet]. 2003;4:625-37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12737799. doi:10.1016/S1534-5807(03)00127-8
  • Fay DS, Stanley HM, Han M, Wood WB. A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Dev Biol [Internet]. 1999;205:240-53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9917360. doi:10.1006/dbio.1998.9096
  • Lehmann R, Nüsslein-Volhard C. hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev Biol. 1987;119:402-17. doi:10.1016/0012-1606(87)90045-5. PMID:3803711
  • Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn E a, Michel G, Nitsch R, Krappmann D, Wulczyn FG. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol [Internet]. 2009;11:1411-20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19898466. doi:10.1038/ncb1987
  • Schulman BRM, Liang X, Stahlhut C, Delconte C, Stefani G, Slack FJ. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and seural tube closure. Cell cycle. 2008;7:3935-42. doi:10.4161/cc.7.24.7397. PMID:19098426
  • Roush SF, Slack FJ. Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Dev Biol. 2009;334:523-34. doi:10.1016/j.ydbio.2009.07.012. PMID:19627983
  • Niwa R, Zhou F, Li C, Slack FJ. The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol. 2008;315:418-25. doi:10.1016/j.ydbio.2007.12.044. PMID:18262516
  • Daigle I, Li C. apl-i , a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc Natl Acad Sci U S A. 1993;90:12045-9. doi:10.1073/pnas.90.24.12045. PMID:8265668
  • Rossor MN, Newman S, Frackowiak RSJ, Lantos P, Kennedy AM. Alzheimer's disease families with amyloid precursor protein mutations. In: Annals of the New York Academy of Sciences. 1993. page 198-202.
  • Ewald CY, Li C. Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Brain Struct Funct. 2010;214:263-83. doi:10.1007/s00429-009-0235-3. PMID:20012092
  • Zambrano N, Bimonte M, Arbucci S, Gianni D, Russo T, Bazzicalupo P. feh-1 and apl-1, the Caenorhabditis elegans orthologues of mammalian Fe65 and beta-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping. J Cell Sci [Internet]. 2002;115:1411-22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11896189
  • Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X, Daigle I, Markowitz M, O'Connor G, Plasterk R, et al. APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci U S A. 2007;104:1971-6. doi:10.1073/pnas.0603997104. PMID:17267616
  • Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BMM, Hooli B, Divito J, Ionita I, et al. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83:623-32. doi:10.1016/j.ajhg.2008.10.008. PMID:18976728
  • Coon KD, Myers AJ, Craig DW, Webster JA, Pearson J V, Lince DH, Zismann VL, Beach TG, Leung D, Bryden L, et al. A High-Density Whole-Genome Association Study Reveals That APOE Is the Major Susceptibility Gene for Sporadic Late-Onset Alzheimer's Disease. J Clin Psychiatry. 2007;614-9.
  • Edwards TL, Pericak-Vance M, Gilbert JR, Haines JL, Martin ER, Ritchie MD. An association analysis of Alzheimer disease candidate genes detects an ancestral risk haplotype clade in ACE and putative multilocus association between ACE, A2M, and LRRTM3. Am J Med Genet Part B. 2009;150B:721-35. doi:10.1002/ajmg.b.30899. PMID:19105203
  • Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol [Internet]. 2008;65:45-53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17998437
  • Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R, Stone D, Schadt E, et al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Hum Mol Genet [Internet]. 2007;16:865-73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17317784. doi:10.1093/hmg/ddm031
  • Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O'Donovan MC, et al. A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Med Genomics. 2008;1:44. doi:10.1186/1755-8794-1-44. PMID:18823527
  • Beecham GW, Martin ER, Li Y-J, Slifer M a, Gilbert JR, Haines JL, Pericak-Vance M a. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet. 2009;84:35-43. doi:10.1016/j.ajhg.2008.12.008. PMID:19118814
  • Feulner TM, Laws SM, Friedrich P, Wagenpfeil S, Wurst SHR, Riehle C, Kuhn K a, Krawczak M, Schreiber S, Nikolaus S, et al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiatry [Internet]. 2010;15:756-66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19125160. doi:10.1038/mp.2008.141
  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009;41:1088-93. doi:10.1038/ng.440. PMID:19734902
  • Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009;41:1094-9. doi:10.1038/ng.439. PMID:19734903
  • Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith A V, Carassquillo MM, Lambert JC, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832-40. doi:10.1001/jama.2010.574. PMID:20460622
  • Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci [Internet]. 2001;4:233-4. Available from: https://doi.org/10.1038/85064. doi:10.1038/85064
  • Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, et al. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci [Internet]. 2001;4:231-2. Available from: https://doi.org/10.1038/85059. doi:10.1038/85059
  • Reiman EM, Webster J a, Myers AJ, Hardy J, Dunckley T, Zismann VL, Joshipura KD, Pearson J V, Hu-Lince D, Huentelman MJ, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron. 2007;54:713-20. doi:10.1016/j.neuron.2007.05.022. PMID:17553421
  • Lall S, Grün D, Krek A, Chen K, Wang Y-L, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol [Internet]. 2006;16:460-71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16458514. doi:10.1016/j.cub.2006.01.050
  • Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell [Internet]. 2005;8:321-30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15737928. doi:10.1016/j.devcel.2004.12.019
  • Brooks DR, Appleford PJ, Murray L, Isaac RE. An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J Biol Chem [Internet]. 2003;278:52340-6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14559923. doi:10.1074/jbc.M308858200
  • Frand AR, Russel S, Ruvkun G. Functional genomic analysis of C. elegans molting. PLoS Biol. 2005;3:e312. doi:10.1371/journal.pbio.0030312
  • Hendriks G-J, Gaidatzis D, Aeschimann F, Großhans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell [Internet]. 2014;53:380-92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24440504.
  • Kim DH, Grün D, van Oudenaarden A. Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat Genet. 2013;45:1337-44. doi:10.1038/ng.2763. PMID:24036951
  • Hayes GD, Frand AR, Ruvkun G. The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25. Development [Internet]. 2006;133:4631-41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17065234. doi:10.1242/dev.02655
  • Kostrouchova M, Krause M, Kostrouch Z, Rall JE. Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2001;98:7360-5. doi:10.1073/pnas.131171898. PMID:11416209
  • Asahina M, Ishihara T, Jindra M, Kohara Y, Katsura I, Hirose S. The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes Cells. 2000;5:711-23. doi:10.1046/j.1365-2443.2000.00361.x. PMID:10971653
  • Gissendanner CR, Sluder AE. nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol. 2000;221:259-72. doi:10.1006/dbio.2000.9679. PMID:10772806
  • Hada K, Asahina M, Hasegawa H, Kanaho Y, Slack FJ, Niwa R. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition. Dev Biol. 2010;344:1100-9. doi:10.1016/j.ydbio.2010.05.508. PMID:20678979
  • Carey RM. Newly discovered components and actions of the renin-angiotensin system. Hypertension [Internet]. 2013;62:818-22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24082058. doi:10.1161/HYPERTENSIONAHA.113.01111
  • Kehoe PG, Russ C, McIlory S, Williams H, Holmans P, Holmes C, Liolitsa D, Vahidassr D, Powell J, McGleenon B, et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet [Internet]. 1999;21:71-2. Available from: https://doi.org/10.1038/5009. doi:10.1038/5009
  • Lehmann DJ, Cortina-Borja M, Warden DR, Smith AD, Sleegers K, Prince JA, van Duijn CM, Kehoe PG. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am J Epidemiol [Internet]. 2005;162:305-17. Available from: http://aje.oxfordjournals.org/content/162/4/305.short. doi:10.1093/aje/kwi202
  • Hu J, Igarashi A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta ); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem. 2001;276:47863-8. doi:10.1074/jbc.M104068200. PMID:11604391
  • Toropygin IY, Kugaevskaya E V, Mirgorodskaya OA, Elisseeva YE, Kozmin YP, Popov IA, Nikolaev EN, Makarov AA, Kozin SA. The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer's Abeta-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization tim. Rapid Commun Mass Spectrom [Internet]. 2008;22:231-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18085519. doi:10.1002/rcm.3357
  • Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, Maul B, Walther T, Siems WE. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-β peptides. Eur J Pharmacol. 2008;588:18-25. doi:10.1016/j.ejphar.2008.03.058. PMID:18495113
  • Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007;117:3393-402. doi:10.1172/JCI31547. PMID:17965777
  • Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, Fujita T, Iwai M, Horiuchi M. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008;375:446-9. doi:10.1016/j.bbrc.2008.08.032. PMID:18715543
  • Kehoe PG, Miners S, Love S. Angiotensins in Alzheimer's disease – friend or foe? Trends Neurosci [Internet]. 2009;32:619-28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19796831. doi:10.1016/j.tins.2009.07.006
  • Brenner S. The Genetics of Caenorhabditis elegans. Genetics. 1974;77:71-94. PMID:4366476
  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature [Internet]. 2003;421:231-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12529635. doi:10.1038/nature01278
  • Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene [Internet]. 2001;263:103-12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11223248. doi:10.1016/S0378-1119(00)00579-5
  • Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol. 2008;9:9. Available from: https://doi.org/10.1186/1471-2199-9-9. doi:10.1186/1471-2199-9-9. PMID:18211699

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.