2,367
Views
13
CrossRef citations to date
0
Altmetric
Report

p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs

, , , , , , , & ORCID Icon show all
Pages 1585-1600 | Received 27 Feb 2017, Accepted 21 Jun 2017, Published online: 11 Aug 2017

References

  • Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14:359-70; PMID:24739573; https://doi.org/10.1038/nrc3711
  • Daniely Y, Dimitrova DD, Borowiec JA. Stress-Dependent Nucleolin Mobilization Mediated by p53-Nucleolin Complex Formation. Mol. Cell. Biol 22, 6014-22 (2002); PMID:12138209; https://doi.org/10.1128/MCB.22.16.6014-6022.2002
  • Olson MOJ. Sensing cellular stress: another new function for the nucleolus? Sci. STKE 2004; 2004:pe10.
  • Bouafia A, Corre S, Gilot D, Mouchet N, Prince S, Galibert MD. p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision. PLoS Genet 2014; 10:e1004309; PMID:24831529; https://doi.org/10.1371/journal.pgen.1004309
  • Olovnikov I, Kravchenko J, Chumakov P. Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 2009; 19:32-41; PMID:19101635; https://doi.org/10.1016/j.semcancer.2008.11.005
  • Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. Eur. J. Biochem 2001; 268:2784-91; PMID:11358493; https://doi.org/10.1046/j.1432-1327.2001.02228.x
  • Qian Y, Chen X. Senescence regulation by the p53 protein family. Methods Mol. Biol 2013; 965:37-61; PMID:23296650
  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436:725-30; PMID:16079851; https://doi.org/10.1038/nature03918
  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4:1-7; PMID:7922305; https://doi.org/10.1016/S0960-9822(00)00002-6
  • Malkin D. Li-fraumeni syndrome. Genes Cancer 2011; 2:475-84; PMID:21779515; https://doi.org/10.1177/1947601911413466
  • Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC, Shannon K, Lowe SW. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010; 24:1389-402; PMID:20595231; https://doi.org/10.1101/gad.1940710
  • Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012; 3:199-208; PMID:23150753; https://doi.org/10.1177/1947601912454734
  • Shi D, Gu W. Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity. Genes Cancer 2012; 3:240-8; PMID:23150757; https://doi.org/10.1177/1947601912455199
  • Iwakuma T, Lozano G. MDM2, An Introduction 2003;. 1:993-1000.
  • Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res 2003; 1:1001-8; PMID:14707283
  • de Oca Luna RM, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203-6; PMID:7477326; https://doi.org/10.1038/378203a0
  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378:206-8; PMID:7477327; https://doi.org/10.1038/378206a0
  • Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts (p21/WAF1/Li-Fraumeni cells/tetracycline/mimosine/cyclin-cyclin-dependent kinase). Cell Biol 1995; 92:8493-97.
  • El-Deiry W, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817-25; PMID:8242752; https://doi.org/10.1016/0092-8674(93)90500-P
  • Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58; PMID:25486564; https://doi.org/10.4161/15384101.2014.949083
  • Hünten S, Kaller M, Drepper F, Oeljeklaus S, Bonfert T, Erhard F, Dueck A, Eichner N, Friedel CC, Meister G, et al. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Mol. Cell. Proteomics 2015; 14:2609-29; PMID:26183718; https://doi.org/10.1074/mcp.M115.050237
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5:522-31; PMID:15211354; https://doi.org/10.1038/nrg1379
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15:509-24; PMID:25027649; https://doi.org/10.1038/nrm3838
  • Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta - Mol Cell Res 2010; 1803:1231-43; https://doi.org/10.1016/j.bbamcr.2010.06.013
  • Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12:613-26; PMID:22898542; https://doi.org/10.1038/nrc3318
  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26:731-43; PMID:17540598; https://doi.org/10.1016/j.molcel.2007.05.017
  • Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 2007; 26:745-52; PMID:17540599; https://doi.org/10.1016/j.molcel.2007.05.010
  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol 2007; 17:1298-307; PMID:17656095; https://doi.org/10.1016/j.cub.2007.06.068
  • Hinkel R, Ng JKM, Kupatt C. Targeting microRNAs for cardiovascular therapeutics in coronary artery disease. Curr Opin Cardiol 2014; 29:586-94; PMID:25159281
  • Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW. Y. C. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guideli. Am. Coll. Cardiol. Web Site. Circulation 2006; 113(7):e166-286; available at: http://www.acc.org/clinical/guidelines/failure//index.pdf
  • Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet 2011; 378:1847-57; PMID:22088800
  • Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 2014; 13:532-41; PMID:25306390
  • Krum H, Abraham WT. Heart failure. Lancet 2009; 373:941-55; PMID:19286093
  • Song H, Conte JV, Foster AH, McLaughlin JS, Wei C. Increased p53 protein expression in human failing myocardium.e. J Hear Lung Transplant 1999; 18:744-9.
  • Ehler E, Moore-Morris T, Lange S. Isolation and Culture of Neonatal Mouse Cardiomyocytes. J Vis Exp 2013; e50154-e50154; https://doi.org/10.3791/50154
  • Mak TW, Hauck L, Grothe D, Billia F. p53 regulates the cardiac transcriptome. Proc Natl Acad Sci U S A 2017; 114:2331-36; PMID:28193895
  • van Opbergen CJM, Delmar M, van Veen TAB. Potential new mechanisms of pro-arrhythmia in arrhythmogenic cardiomyopathy: focus on calcium sensitive pathways. Netherlands Hear J 2017; 25(3):157-69; https://doi.org/10.1007/s12471-017-0946-7
  • Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Hermeking H. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res 2014; 74:532-42; PMID:24285725; https://doi.org/10.1158/0008-5472.CAN-13-2203
  • Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol 2011; 11:34; PMID:21645416; https://doi.org/10.1186/1471-213X-11-34
  • Chen W, Frangogiannis NG. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta 2013; 1833:945-53; https://doi.org/10.1016/j.bbamcr.2012.08.023
  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438:685-89; PMID:16258535; https://doi.org/10.1038/nature04303
  • Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 2007; 35:2885-92; PMID:17439965; https://doi.org/10.1093/nar/gkm024
  • Rhind N, Russell P. Signaling pathways that regulate cell division. Cold Spring Harb. Perspect Biol 2012; 4:a005942-; PMID:23028116; https://doi.org/10.1101/cshperspect.a005942
  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995; 10:175-80; PMID:7663512; https://doi.org/10.1038/ng0695-175
  • Krinka D, Raid R, Pata I, Kärner J, Maimets T. In situ hybridisation of chick embryos with p53-specific probe and their immunostaining with anti-p53 antibodies. Anat. Embryol. (Berl) 2001; 204:207-15; PMID:11681800; https://doi.org/10.1007/s004290100195
  • Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim. Biophys. Acta - Mol. Basis Dis 2011; 1812:592-601; https://doi.org/10.1016/j.bbadis.2011.02.002
  • Berthet C, Kaldis P. Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div 2006; 1:10; PMID:16759374; https://doi.org/10.1186/1747-1028-1-10
  • Malumbres M, Sotillo R, Santamaría D, Galán J, Cerezo A, Ortega S, Dubus P, Barbacid M. Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6. Cell 2004; 118:493-504; PMID:15315761; https://doi.org/10.1016/j.cell.2004.08.002
  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. Cdk2 Knockout Mice Are Viable. Curr Biol 2003; 13:1775-85; PMID:14561402; https://doi.org/10.1016/j.cub.2003.09.024
  • Aleem E, Kiyokawa H, Kaldis P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nat. Cell Biol 2005; 7:831-6; PMID:16007079; https://doi.org/10.1038/ncb1284
  • Huang W, Tian SS, Hang PZ, Sun C, Guo J, Du ZM. Combination of microRNA-21 and microRNA-146a Attenuates Cardiac Dysfunction and Apoptosis During Acute Myocardial Infarction in Mice. Mol Ther Acids 2016; 5:e296; https://doi.org/10.1038/mtna.2016.12
  • Hurford RK, Cobrinik D, Lee M-H, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11(11):1447-63.
  • Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, Obuse C, Hirota T. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev 2011; 25:863-74; PMID:21498573; https://doi.org/10.1101/gad.2016411
  • Baquero MT, Hanna JA, Neumeister V, Cheng H, Molinaro AM, Harris LN, Rimm DL. Stathmin expression and its relationship to microtubule-associated protein tau and outcome in breast cancer. Cancer 2012; 118:4660-9; PMID:22359235; https://doi.org/10.1002/cncr.27453
  • Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted Expression of Cyclin D2 Results in Cardiomyocyte DNA Synthesis and Infarct Regression in Transgenic Mice. Circ Res 2004; 96:110-118; PMID:15576649; https://doi.org/10.1161/01.RES.0000152326.91223.4F
  • Tane S, Okayama H, Ikenishi A, Amemiya Y, Nakayama KI, Takeuchi T. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth. Biochem Biophys Res Commun 2015; 466:147-154; PMID:26363457; https://doi.org/10.1016/j.bbrc.2015.08.102
  • Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res. 2007; 100(12):1741-1748; PMID:17495221; https://doi.org/10.1161/CIRCRESAHA.107.153544
  • Tamamori-Adachi M, Hayashida K, Nobori K, Omizu C, Yamada K, Sakamoto N, Kamura T, Fukuda K, Ogawa S, Nakayama KI, et al. Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. J Biol Chem. 2004; 279(48):50429-50436. doi:10.1074/jbc.M403084200; PMID:15371458; https://doi.org/10.1074/jbc.M403084200
  • Muralidhar SA, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Etiol Morphog Congenit Hear Dis From Gene Funct Cell Interact to Morphol. 2016; 497(7448):93-101. https://doi.org/10.1007/978-4-431-54628-3_11
  • Murata-Hori M, Tatsuka M, Wang Y-L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol Biol Cell 2002; 13:1099-108; PMID:11950924; https://doi.org/10.1091/mbc.01-09-0467
  • Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med 2014; 6:239rv1; PMID:24898748; https://doi.org/10.1126/scitranslmed.3006681
  • Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 2015; 116:35-45; PMID:25249570; https://doi.org/10.1161/CIRCRESAHA.115.304457
  • von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci 2012; 109:2394-99; https://doi.org/10.1073/pnas.1116136109
  • Zhou J. An emerging role for Hippo-YAP signaling in cardiovascular development. J Biomed Res 2014; 28:251-4.
  • Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005; 19:1175-87; https://doi.org/10.1101/gad.1306705.chaemic
  • Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009; 138:257-70; PMID:19632177; https://doi.org/10.1016/j.cell.2009.04.060
  • Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 2011; 13:83-92; PMID:20810473; https://doi.org/10.1093/eurjhf/hfq152
  • Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492:376-81; PMID:23222520; https://doi.org/10.1038/nature11739
  • Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW 2nd, van Rooij E, Olson EN. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 109:670-9; PMID:21778430; https://doi.org/10.1161/CIRCRESAHA.111.248880
  • Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R. MicroRNA-34a Plays a Key Role in Cardiac Repair and Regeneration Following Myocardial Infarction. Circ Res 2015; 117(5):450-59; PMID:26082557; https://doi.org/10.1161/CIRCRESAHA.117.305962
  • Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, et al. Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013; 112(12):1557-1566; PMID:23575307; https://doi.org/10.1161/CIRCRESAHA.112.300658
  • Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508:531-5; PMID:24670661; https://doi.org/10.1038/nature13073
  • Graham RM, Harvey RP. The Ontogeny of Cardiac Regeneration. Circ Res 2011; 108:1304-05; PMID:21617133; https://doi.org/10.1161/RES.0b013e318222ba1a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.