1,453
Views
5
CrossRef citations to date
0
Altmetric
Report

Analysis of defective protein ubiquitylation associated to adriamycin resistant cells

, , , , , , , , & show all
Pages 2337-2344 | Received 08 May 2017, Accepted 29 Sep 2017, Published online: 20 Nov 2017

References

  • Ciechanover A, Stanhill A. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochimica et biophysica acta. 2014;1843:86–96. doi:10.1016/j.bbamcr.2013.07.007. PMID:23872423.
  • Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system – implications for cell cycle control and the targeted treatment of cancer. Biochimica et biophysica acta. 2014;1843:150–162. doi:10.1016/j.bbamcr.2013.02.028. PMID:23466868.
  • Clague MJ, Heride C, Urbe S. The demographics of the ubiquitin system. Trends Cell Biol. 2015;25:417–426. doi:10.1016/j.tcb.2015.03.002. PMID:25906909.
  • Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol. 2012;10:23. doi:10.1186/1741-7007-10-23. PMID:22420778.
  • Heideker J, Wertz IE. DUBs, the regulation of cell identity and disease. Biochem J. 2015;465:1–26. doi:10.1042/BJ20140496. PMID:25631680.
  • Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 2012;81:291–322. doi:10.1146/annurev-biochem-051810-094654. PMID:22482907.
  • Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 2014;3:1027–1088. doi:10.3390/cells3041027. PMID:25396681.
  • Xolalpa W, Perez-Galan P, Rodriguez MS, Roue G. Targeting the ubiquitin proteasome system: beyond proteasome inhibition. Curr Pharm Des. 2013;19:4053–4093. doi:10.2174/1381612811319220014. PMID:23181575.
  • Mata-Cantero L, Lobato-Gil S, Aillet F, Lang VR MS. The ubiquitin-proteasome system (UPS) as a cancer drug target: emerging mechanisms and therapeutics. Stress Response Pathways in Cancer. From Molecular Targets to Novel Therapeutics: Springer, Dordrecht,. 2015.
  • Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 2017;16:634–648. doi:10.1080/15384101.2017.1288326. PMID:28166483.
  • Liu J, Zheng H, Tang M, Ryu YC, Wang X. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol. 2008;295:H2541–H2550. doi:10.1152/ajpheart.01052.2008. PMID:18978187.
  • Ranek MJ, Wang X. Activation of the ubiquitin-proteasome system in doxorubicin cardiomyopathy. Curr Hypertens Rep. 2009;11:389–395. doi:10.1007/s11906-009-0068-8. PMID:19895749.
  • Serna S, Xolalpa W, Lang V, Aillet F, England P, Reichardt N, Rodriguez MS. Efficient monitoring of protein ubiquitylation levels using TUBEs-based microarrays. FEBS Lett. 2016;590:2748–2756. doi:10.1002/1873-3468.12289. PMID:27410252.
  • Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009;10:1250–1258. doi:10.1038/embor.2009.192. PMID:19798103.
  • Hjerpe R, Rodriguez MS. Efficient approaches for characterizing ubiquitinated proteins. Biochem Soc Trans. 2008;36:823–827. doi:10.1042/BST0360823. PMID:18793144.
  • Aillet F, Lopitz-Otsoa F, Hjerpe R, Torres-Ramos M, Lang V, Rodriguez MS. Isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. Methods Mol Biol. 2012;832:173–183. doi:10.1007/978-1-61779-474-2_12. PMID:22350885.
  • Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J. A data set of human endogenous protein ubiquitination sites. Molecular & cellular proteomics: MCP. 2011;10:M110 002089. doi:10.1074/mcp.M110.002089.
  • Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R, Elortza F, Rodriguez MS. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J Proteomics. 2012;75:2998–3014. doi:10.1016/j.jprot.2011.12.001. PMID:22178446.
  • Yoshida Y, Saeki Y, Murakami A, Kawawaki J, Tsuchiya H, Yoshihara H, Shindo M, Tanaka K. A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proc Natl Acad Sci U S A. 2015;112:4630–4635. doi:10.1073/pnas.1422313112. PMID:25827227.
  • Eisenberg-Lerner A, Ciechanover A, Merbl Y. Post-translational modification profiling – A novel tool for mapping the protein modification landscape in cancer. Exp Biol Med. 2016;241:1475–1482. doi:10.1177/1535370216651732. PMID:27229346.
  • Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol. 2011;18:1401–1412. doi:10.1016/j.chembiol.2011.08.018.
  • Seiberlich V, Goldbaum O, Zhukareva V, Richter-Landsberg C. The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases. Biochimica et biophysica acta. 2012;1823:2057–2068. doi:10.1016/j.bbamcr.2012.04.011. PMID:22565157.
  • Sane S, Rezvani K. Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. International journal of molecular sciences. 2017;18. doi:10.3390/ijms18020442. PMID:28218667.
  • Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System. Int J Mol Sci. 2016;17(12):2041. doi:10.3390/ijms17122041. PMID:27929429.
  • Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, Torres-Ramos M, Farras R, Hay RT, Rodriguez MS. Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation. The international journal of biochemistry & cell biology. 2010;42:725–735. doi:10.1016/j.biocel.2010.01.010.
  • Lang V, Pallara C, Zabala A, Lobato-Gil S, Lopitz-Otsoa F, Farras R, Hjerpe R, Torres-Ramos M, Zabaleta L, Blattner C, et al. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol Oncol. 2014;8:1026–1042. doi:10.1016/j.molonc.2014.04.002. PMID:24816189.
  • Gehrmann ML, Fenselau C, Hathout Y. Highly altered protein expression profile in the adriamycin resistant MCF-7 cell line. Journal of proteome research. 2004;3:403–409. doi:10.1021/pr0340577. PMID:15253420.
  • Wang Z, Liang S, Lian X, Liu L, Zhao S, Xuan Q, Guo L, Liu H, Yang Y, Dong T, et al. Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Sci Rep. 2015;5:9301. doi:10.1038/srep09301. PMID:25818003.
  • Sinha BK, Katki AG, Batist G, Cowan KH, Myers CE. Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochemical pharmacology 1987;36:793–796. doi:10.1016/0006-2952(87)90164-X. PMID:3032195.
  • Demasi M, Simoes V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochimica et biophysica acta. 2015;1850:1594–1606. doi:10.1016/j.bbagen.2014.10.031. PMID:25450485.
  • Bossis G, Sarry JE, Kifagi C, Ristic M, Saland E, Vergez F, Salem T, Boutzen H, Baik H, Brockly F, et al. The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep. 2014;7:1815–1823. doi:10.1016/j.celrep.2014.05.016. PMID:24910433.
  • Davies R, Budworth J, Riley J, Snowden R, Gescher A, Gant TW. Regulation of P-glycoprotein 1 and 2 gene expression and protein activity in two MCF-7/Dox cell line subclones. British journal of cancer 1996;73:307–315. doi:10.1038/bjc.1996.54. PMID:8562335.
  • Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986;261:15544–15549. PMID:3782078.
  • Januchowski R, Sterzynska K, Zaorska K, Sosinska P, Klejewski A, Brazert M, Nowicki M, Zabel M. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines. J Ovarian Res. 2016;9:65. doi:10.1186/s13048-016-0278-z. PMID:27756418.
  • Aillet F, Lopitz-Otsoa F, Egana I, Hjerpe R, Fraser P, Hay RT, Rodriguez MS, Lang V. Heterologous SUMO-2/3-ubiquitin chains optimize IkappaBalpha degradation and NF-kappaB activity. PloS One. 2012;7:e51672. doi:10.1371/journal.pone.0051672. PMID:23284737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.