1,305
Views
7
CrossRef citations to date
0
Altmetric
Reports

Negative impact of hyperglycaemia on mouse alveolar development

, , , , , , , , & show all
Pages 80-91 | Received 21 Jul 2017, Accepted 29 Oct 2017, Published online: 21 Dec 2017

References

  • Ejdesjo A, Wentzel P, Eriksson UJ. Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metabolism. 2012;302:E1198–E1209. doi:10.1152/ajpendo.00661.2011. PMID:22374754
  • Gheorman L, Iliescu D, Ceausu I, et al. Importance of early complex evaluation in high-risk pregnancy associated to diabetes mellitus. Case presentation and review of the literature. Rom J Morphol Embryol. 2011;52:1127–1132. PMID:22119836
  • Macintosh MC, Fleming KM, Bailey JA, et al. Perinatal mortality and congenital anomalies in babies of women with type 1 or type 2 diabetes in England, Wales, and Northern Ireland: population based study. Bmj. 2006;333:177. doi:10.1136/bmj.38856.692986.AE. PMID:16782722
  • Bell D, Collier A, Matthews DM, et al. Are reduced lung volumes in IDDM due to defect in connective tissue? Diabetes. 1988;37:829–831. doi:10.2337/diab.37.6.829. PMID:3384183
  • Hahn T, Barth S, Weiss U, et al. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J Official Pub Federation Am Soc Exp Biol. 1998;12:1221–1231. PMID:9737725
  • Baack ML, Forred BJ, Larsen TD, et al. Consequences of a maternal high-fat diet and late gestation diabetes on the developing Rat Lung. PLoS One. 2016;11:e0160818. doi:10.1371/journal.pone.0160818. PMID:27518105
  • Mayor RS, Finch KE, Zehr J, et al. Maternal high-fat diet is associated with impaired fetal lung development. Am J Physiol Lung Cell Mol Physiol. 2015;309:L360–L368. doi:10.1152/ajplung.00105.2015. PMID:26092997
  • Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141:502–513. doi:10.1242/dev.098186. PMID:24449833
  • Evans MJ, Cabral LJ, Stephens RJ, et al. Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol. 1973;70:175–198. PMID:4566990
  • Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123:3025–3036. doi:10.1172/JCI68782. PMID:23921127
  • Yee M, Gelein R, Mariani TJ, et al. The Oxygen environment at birth specifies the population of alveolar epithelial stem cells in the Adult Lung. Stem Cells. 2016;34:1396–1406. doi:10.1002/stem.2330. PMID:26891117
  • Yin Y, Wang F, Ornitz DM. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development. 2011;138:3169–3177. doi:10.1242/dev.065110. PMID:21750028
  • Sekine K, Ohuchi H, Fujiwara M, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–141. doi:10.1038/5096. PMID:9916808
  • Ohuchi H, Hori Y, Yamasaki M, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277:643–649. doi:10.1006/bbrc.2000.3721. PMID:11062007
  • Miyamoto M, Naruo K, Seko C, et al. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol. 1993;13:4251–4259. doi:10.1128/MCB.13.7.4251. PMID:8321227
  • Fakhry A, Ratisoontorn C, Vedhachalam C, et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone. 2005;36:254–266. doi:10.1016/j.bone.2004.10.003. PMID:15780951
  • Yu B, Qian T, Wang Y, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res. 2012;40:10356–10365. doi:10.1093/nar/gks750. PMID:22917588
  • Behr B, Leucht P, Longaker MT, et al. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A. 2010;107:11853–11858. doi:10.1073/pnas.1003317107. PMID:20547837
  • Joannes A, Brayer S, Besnard V, et al. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol. 2016;310:L615–L629. doi:10.1152/ajplung.00185.2015. PMID:26773067
  • Bellusci S, Furuta Y, Rush MG, et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development. 1997;124:53–63. PMID:9006067
  • Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol. 1998;8:1083–1086. doi:10.1016/S0960-9822(98)70446-4. PMID:9768363
  • Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development. 2000;127:2695–2704. PMID:10821767
  • Tang M, Xu W, Wang Q, et al. Potential of DNMT and its Epigenetic Regulation for Lung Cancer Therapy. Curr Genomics. 2009;10:336–352. doi:10.2174/138920209788920994. PMID:20119531
  • Igarashi M, Finch PW, Aaronson SA. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J Biol Chem. 1998;273:13230–13235. doi:10.1074/jbc.273.21.13230. PMID:9582367
  • Jimenez PA, Rampy MA. Keratinocyte growth factor-2 accelerates wound healing in incisional wounds. J Surg Res. 1999;81:238–242. doi:10.1006/jsre.1998.5501. PMID:9927546
  • Upadhyay D, Correa-Meyer E, Sznajder JI, et al. FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation. Am J Physiol Lung Cell Mol Physiol. 2003;284:L350–L359. doi:10.1152/ajplung.00161.2002. PMID:12533312
  • Gupte VV, Ramasamy SK, Reddy R, et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med. 2009;180:424–436. doi:10.1164/rccm.200811-1794OC. PMID:19498056
  • Yang J, Velikoff M, Canalis E, et al. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor. Am J Phys-Lung Cellular Mol Physiol. 2014;306:L786–L796. doi:10.1152/ajplung.00243.2013. PMID:24508728
  • Lee TC, Gold LI, Reibman J, et al. Immunohistochemical localization of transforming growth factor-â and insulin-like growth factor-I in asbestosis in the sheep model. Int Arch Occup Environ Health. 1997;69:157–164. doi:10.1007/s004200050132. PMID:9049666
  • Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 1992;360:361–364. doi:10.1038/360361a0. PMID:1280332
  • Dessimoz J, Bonnard C, Huelsken J, et al. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol. 2005;15:1677–1683. doi:10.1016/j.cub.2005.08.037. PMID:16169491
  • Apte U, Zeng G, Thompson MD, et al. Beta-Catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1578–G1585. doi:10.1152/ajpgi.00359.2006. PMID:17332475
  • Mucenski ML, Wert SE, Nation JM, et al. Beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem. 2003;278:40231–40238. doi:10.1074/jbc.M305892200. PMID:12885771
  • Murtaugh LC, Law AC, Dor Y, et al. Beta-catenin is essential for pancreatic acinar but not islet development. Development. 2005;132:4663–4674. doi:10.1242/dev.02063. PMID:16192304
  • Shu W, Guttentag S, Wang Z, et al. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol. 2005;283:226–239. doi:10.1016/j.ydbio.2005.04.014. PMID:15907834
  • Tan X, Behari J, Cieply B, et al. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131:1561–1572. doi:10.1053/j.gastro.2006.08.042. PMID:17101329
  • Goss AM, Tian Y, Tsukiyama T, et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17:290–298. doi:10.1016/j.devcel.2009.06.005. PMID:19686689
  • Harris-Johnson KS, Domyan ET, Vezina CM, et al. beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci U S A. 2009;106:16287–16292. doi:10.1073/pnas.0902274106. PMID:19805295
  • Morrisey EE, Ip HS, Lu MM, et al. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996;177:309–322. doi:10.1006/dbio.1996.0165. PMID:8660897
  • Zhang Y, Goss AM, Cohen ED, et al. A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat Genet. 2008;40:862–870. doi:10.1038/ng.157. PMID:18536717
  • Kumar SD, Dheen ST, Tay SS. Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development. Cardiovasc Diabetol. 2007;6:34. doi:10.1186/1475-2840-6-34. PMID:17967198
  • Han SS, Wang G, Jin Y, et al. Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy. PLoS One. 2015;10:e0139141. doi:10.1371/journal.pone.0139141. PMID:26418041
  • Plosa EJ, Young LR, Gulleman PM, et al. Epithelial beta1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751–4762. doi:10.1242/dev.117200. PMID:25395457
  • Kauffman SL. Acceleration of canalicular development in lungs of fetal mice exposed transplacentally to dexamethasone. Lab Invest. 1977;36:395–401. PMID:66416
  • Wang X, Wang Y, Snitow ME, et al. Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung. Dev Biol. 2016;414:161–169. doi:10.1016/j.ydbio.2016.04.023. PMID:27141870
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–1108. doi:10.1038/nprot.2008.73. PMID:18546601
  • Bai R, Guan L, Zhang W, et al. Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells. Biochim Biophys Acta. 2016;1860:2782–2792. doi:10.1016/j.bbagen.2016.05.020. PMID:27208422
  • Popov D, Simionescu M. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur Respir J. 1997;10:1850–1858. doi:10.1183/09031936.97.10081850. PMID:9272930
  • Yoon DH, Lim MH, Lee YR, et al. A novel synthetic analog of Militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells. Toxicol Appl Pharmacol. 2013;273:659–671. doi:10.1016/j.taap.2013.10.015. PMID:24161344
  • Del Riccio V, van Tuyl M, Post M. Apoptosis in lung development and neonatal lung injury. Pediatr Res. 2004;55:183–189. doi:10.1203/01.PDR.0000103930.93849.B2. PMID:14630991
  • Eriksson UJ, Borg LA. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes. 1993;42:411–419. doi:10.2337/diab.42.3.411. PMID:8432412
  • Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring of diabetic mothers–animal and human studies. Rev Endocr Metab Disord. 2003;4:79–93. doi:10.1023/A:1021879504372. PMID:12618562
  • Zangen SW, Yaffe P, Shechtman S, et al. The role of reactive oxygen species in diabetes-induced anomalies in embryos of Cohen diabetic rats. Int J Exp Diabetes Res. 2002;3:247–255. doi:10.1080/15604280214933. PMID:12546278
  • Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Nat Acad Sci. 2006;103:13180–13185. doi:10.1073/pnas.0605669103.
  • Borchers AT, Chang C, Keen CL, et al. Idiopathic pulmonary fibrosis-an epidemiological and pathological review. Clin Rev Allergy Immunol. 2011;40:117–134. doi:10.1007/s12016-010-8211-5.
  • Asakura S, Kato H, Fujino S, et al. Role of transforming growth factor-beta1 and decorin in development of central fibrosis in pulmonary adenocarcinoma. Hum Pathol. 1999;30:195–198. doi:10.1016/S0046-8177(99)90275-7. PMID:10029448
  • Yoshida M, Hayashi S. Role of TGF-beta and PDGF on the pathogenesis of pulmonary fibrosis–analysis by in vivo gene transfer. Nihon Rinsho Japanese J Clin Med. 1996;54:418–422. PMID:8838090
  • Wollin L, Wex E, Pautsch A, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1434–1445. doi:10.1183/09031936.00174914. PMID:25745043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.