2,274
Views
21
CrossRef citations to date
0
Altmetric
Extra View - Commissioned

Structural and functional differences between porcine brain and budding yeast microtubules

ORCID Icon, , , , , , & ORCID Icon show all
Pages 278-287 | Received 18 Sep 2017, Accepted 01 Dec 2017, Published online: 30 Jan 2018

References

  • Chrétien D, Wade RH. New data on the microtubule surface lattice. Biol Cell. 1991;71:161–74. doi:10.1016/0248-4900(91)90062-R. PMID:1912942
  • Tilney LG, Bryan J, Bush DJ, et al. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973;59:267–75. doi:10.1083/jcb.59.2.267. PMID:4805001
  • Heald R, Khodjakov A. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. J Cell Biol. 2015;211:1103–11. doi:10.1083/jcb.201510015. PMID:26668328
  • Ward JJ, Roque H, Antony C, et al. Mechanical design principles of a mitotic spindle. Elife. 2014;3:e03398–e03398. doi:10.7554/eLife.03398. PMID:25521247
  • Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125:2095–104. doi:10.1242/jcs.053850. PMID:22619228
  • Gurel PS, Hatch AL, Higgs HN. Connecting the Cytoskeleton to the Endoplasmic Reticulum and Golgi. Curr Biol. 2014;24:R660–72. doi:10.1016/j.cub.2014.05.033. PMID:25050967
  • Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol. 2013;29:471–99. doi:10.1146/annurev-cellbio-101011-155711. PMID:23875648
  • Cearns MD, Escuin S, Alexandre P, et al. Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat. 2016;229:63–74. doi:10.1111/joa.12468. PMID:27025884
  • Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42. doi:10.1038/312237a0. PMID:6504138
  • Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. doi:10.1146/annurev.cellbio.13.1.83. PMID:9442869
  • Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391:199–203. doi:10.1038/34465. PMID:9428769
  • Zhang R, Alushin GM, Brown A, et al. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell. 2015;162:849–59. doi:10.1016/j.cell.2015.07.012. PMID:26234155
  • Alushin GM, Lander GC, Kellogg EH, et al. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell. 2014;157:1117–29. doi:10.1016/j.cell.2014.03.053. PMID:24855948
  • Maurer SP, Bieling P, Cope J, et al. GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs). Proc Natl Acad Sci. 2011;108:3988–93. doi:10.1073/pnas.1014758108. PMID:21368119
  • Maurer SP, Fourniol FJ, Bohner G, et al. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell. 2012;149:371–82. doi:10.1016/j.cell.2012.02.049. PMID:22500803
  • Maurer SP, Cade NI, Bohner G, et al. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr Biol. 2014;24:372–84. doi:10.1016/j.cub.2013.12.042. PMID:24508171
  • Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12:773–86. doi:10.1038/nrm3227. PMID:22086369
  • Widlund PO, Podolski M, Reber S, et al. One-step purification of assembly competent tubulin from diverse eukaryotic sources. Mol Biol Cell. 2012;23:4393–401. doi:10.1091/mbc.E12-06-0444. PMID:22993214
  • Davis A, Sage CR, Wilson L, et al. Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry. 1993;32:8823–35. doi:10.1021/bi00085a013. PMID:8364030
  • Drummond DR, Kain S, Newcombe A, et al. Purification of Tubulin from the Fission Yeast Schizosaccharomyces pombe. Methods Mol Biol. 2011;777:29–55. doi:10.1007/978-1-61779-252-6_3. PMID:21773919
  • Sackett DL, Werbovetz Ka, Morrissette NS. Isolating tubulin from nonneural sources. Methods Cell Biol. 2010;95:17–32. doi:10.1016/S0091-679X(10)95002-4.
  • Yoon Y, Oakley BR. Purification and characterization of assembly-competent tubulin from Aspergillus nidulans. Biochemistry. 1995;34:6373–81. doi:10.1021/bi00019a016. PMID:7756266
  • Minoura I, Hachikubo Y, Yamakita Y, et al. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 2013;587:3450–5. doi:10.1016/j.febslet.2013.08.032. PMID:24021646
  • Ti S-C, Pamula MC, Howes SC, et al. Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev Cell. 2016;37:72–84. doi:10.1016/j.devcel.2016.03.003. PMID:27046833
  • Valenstein ML, Roll-Mecak A. Graded control of microtubule severing by tubulin glutamylation. Cell. 2016;164:911–21. doi:10.1016/j.cell.2016.01.019. PMID:26875866
  • Machin NA, Lee JM, Barnes G. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant. Mol Biol Cell. 1995;6:1241–59. doi:10.1091/mbc.6.9.1241. PMID:8534919
  • Schatz PJ, Solomon F, Botstein D. Isolation and characterization of conditional-lethal mutations in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae. Genetics. 1988;120:681–95. PMID:3066684
  • Thomas JH, Neff NF, Botstein D. Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics. 1985;111:715–34. PMID:2998923
  • Richards KL, Anders KR, Nogales E, et al. Structure-function relationships in yeast tubulins. Mol Biol Cell. 2000;11:1887–903. doi:10.1091/mbc.11.5.1887. PMID:10793159
  • Reijo RA, Cooper EM, Beagle GJ, et al. Systematic mutational analysis of the yeast beta-tubulin gene. Mol Biol Cell. 1994;5:29–43. doi:10.1091/mbc.5.1.29. PMID:8186463
  • Ayaz P, Ye X, Huddleston P, et al. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science (80-). 2012;337:857–60. doi:10.1126/science.1221698.
  • Johnson V, Ayaz P, Huddleston P, et al. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry. 2011;50:8636–44. doi:10.1021/bi2005174. PMID:21888381
  • Geyer EA, Burns A, Lalonde BA, et al. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Elife. 2015;4:e10113. doi:10.7554/eLife.10113. PMID:26439009
  • Howes SC, Geyer EA, LaFrance B, et al. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol. 2017;216:jcb.201612195. doi:10.1083/jcb.201612195.
  • Meurer-Grob P, Kasparian J, Wade RH. Microtubule structure at improved resolution. Biochemistry. 2001;40:8000–8. doi:10.1021/bi010343p. PMID:11434769
  • Wade RH, Chrétien D, Job D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J Mol Biol. 1990;212:775–86. doi:10.1016/0022-2836(90)90236-F. PMID:2329582
  • Hyman AA, Chrétien D, Arnal I, et al. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. J Cell Biol. 1995;128:117–25. doi:10.1083/jcb.128.1.117. PMID:7822409
  • Gupta ML, Bode CJ, Georg GI, et al. Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci. 2003;100:6394–7. doi:10.1073/pnas.1131967100. PMID:12740436
  • Andreu JM, Bordas J, Diaz JF, et al. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J Mol Biol. 1992;226:169–84. doi:10.1016/0022-2836(92)90132-4. PMID:1352357
  • des Georges A, Katsuki M, Drummond DR, et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol. 2008;15:1102–8. doi:10.1038/nsmb.1482. PMID:18794845
  • Brouhard GJ, Rice LM. The contribution of αβ-tubulin curvature to microtubule dynamics. J Cell Biol. 2014;207:323–34. doi:10.1083/jcb.201407095. PMID:25385183
  • Molodtsov MI, Mieck C, Dobbelaere J, et al. A force-induced directional switch of a molecular motor enables parallel microtubule bundle formation. Cell. 2016;167:539–552.e14. doi:10.1016/j.cell.2016.09.029. PMID:27716509
  • Aiken J, Buscaglia G, Bates EA, et al. The α-Tubulin gene TUBA1A in brain development: a key ingredient in the neuronal isotype blend. J Dev Biol. 2017;5:8. doi:10.3390/jdb5030008. PMID:29057214
  • Miller FD, Naus CC, Durand M, et al. Isotypes of alpha-tubulin are differentially regulated during neuronal maturation. J Cell Biol. 1987;105:3065–73. doi:10.1083/jcb.105.6.3065. PMID:3693406
  • Banerjee A, Luduena RF. Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J Biol Chem. 1992;267:13335–9. PMID:1618835
  • Schatz PJ, Pillus L, Grisafi P, et al. Two functional alpha-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. Mol Cell Biol. 1986;6:3711–21. doi:10.1128/MCB.6.11.3711. PMID:3025610
  • Neff NF, Thomas JH, Grisafi P, et al. Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell. 1983;33:211–9. doi:10.1016/0092-8674(83)90350-1. PMID:6380751
  • Portran D, Schaedel L, Xu Z, et al. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol. 2017;19:391–8. doi:10.1038/ncb3481. PMID:28250419
  • Howes SC, Alushin GM, Shida T, et al. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell. 2014;25:257–66. doi:10.1091/mbc.E13-07-0387. PMID:24227885
  • Gupta ML, Bode CJ, Thrower DA, et al. beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. Mol Biol Cell. 2002;13:2919–32. doi:10.1091/mbc.E02-01-0003. PMID:12181356
  • Bode CJ, Gupta ML, Suprenant KA, et al. The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro. EMBO Rep. 2003;4:94–9. doi:10.1038/sj.embor.embor716. PMID:12524528
  • Pamula MC, Ti SC, Kapoor TM. The structured core of human β tubulin confers isotype-specific polymerization properties. J Cell Biol. 2016;213:425–33. doi:10.1083/jcb.201603050. PMID:27185835
  • Vemu A, Atherton J, Spector JO, et al. Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem. 2016;291:12907–15. doi:10.1074/jbc.C116.731133. PMID:27129203
  • Leandro-García LJ, Leskelä S, Landa I, et al. Tumoral and tissue-specific expression of the major human β-tubulin isotypes. Cytoskeleton. 2010;67:214–23. doi:10.1002/cm.20436. PMID:20191564
  • Alushin GM, Ramey VH, Pasqualato S, et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature. 2010;467:805–10. doi:10.1038/nature09423. PMID:20944740
  • Wilson-Kubalek EM, Cheeseman IM, Milligan RA. Structural comparison of the Caenorhabditis elegans and human Ndc80 complexes bound to microtubules reveals distinct binding behavior. Mol Biol Cell. 2016;27:1197–203. doi:10.1091/mbc.E15-12-0858. PMID:26941333
  • Kollman JM, Greenberg CH, Li S, et al.. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat Struct Mol Biol. 2015;22:132–7. doi:10.1038/nsmb.2953. PMID:25599398
  • Podolski M, Mahamdeh M, Howard J. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency. J Biol Chem. 2014;289:28087–93. doi:10.1074/jbc.M114.584300. PMID:25172511
  • Zimniak T, Stengl K, Mechtler K, et al. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. J Cell Biol. 2009;186:379–91. doi:10.1083/jcb.200901036. PMID:19667128
  • Forth S, Hsia K-C, Shimamoto Y, et al. Asymmetric friction of nonmotor MAPs can lead to their directional motion in active microtubule networks. Cell. 2014;157:420–32. doi:10.1016/j.cell.2014.02.018. PMID:24725408
  • Suloway C, Pulokas J, Fellmann D, et al. Automated molecular microscopy: the new Leginon system. J Struct Biol. 2005;151:41–60. doi:10.1016/j.jsb.2005.03.010. PMID:15890530
  • Zhang R, Nogales E. A new protocol to accurately determine microtubule lattice seam location. J Struct Biol. 2015;192:245–54. doi:10.1016/j.jsb.2015.09.015. PMID:26424086
  • Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 2013;10:584–90. doi:10.1038/nmeth.2472. PMID:23644547
  • Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015;192:216–21. doi:10.1016/j.jsb.2015.08.008. PMID:26278980
  • Egelman EH. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J Struct Biol. 2007;157:83–94. doi:10.1016/j.jsb.2006.05.015. PMID:16919474
  • Tang G, Peng L, Baldwin PR, et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2007;157:38–46. doi:10.1016/j.jsb.2006.05.009. PMID:16859925
  • Sui H, Downing KH. Structural Basis of Interprotofilament Interaction and Lateral Deformation of Microtubules. Structure. 2010;18:1022–31. doi:10.1016/j.str.2010.05.010. PMID:20696402
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. doi:10.1038/nmeth.2089. PMID:22930834