1,160
Views
3
CrossRef citations to date
0
Altmetric
Reports

MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3-

, &
Pages 492-505 | Received 05 Oct 2017, Accepted 01 Dec 2017, Published online: 30 Jan 2018

References

  • Deegan TD, Diffley JF. MCM: one ring to rule them all. Curr Opin Struct Biol. 2016;37:145–151. doi:10.1016/j.sbi.2016.01.014. PMID:26866665
  • Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol. 2016;428:1822–1832. doi:10.1016/j.jmb.2016.01.024. PMID:26829220
  • Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells. 2013;18:266–277. doi:10.1111/gtc.12040. PMID:23461534
  • Remus D, Beuron F, Tolun G, et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–730. doi:10.1016/j.cell.2009.10.015. PMID:19896182
  • Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 2002;4:198–207. doi:10.1038/ncb757. PMID:11836525
  • Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature. 2000;404:622–625. doi:10.1038/35007104. PMID:10766247
  • DePamphilis ML, Blow JJ, Ghosh S, et al. Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol. 2006;18:231–239. doi:10.1016/j.ceb.2006.04.001. PMID:16650748
  • Gambus A, Khoudoli GA, Jones RC, et al. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem. 2011;286:11855–11864. doi:10.1074/jbc.M110.199521. PMID:21282109
  • Yeeles JT, Deegan TD, Janska A, et al. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519:431–435. doi:10.1038/nature14285. PMID:25739503
  • Ilves I, Petojevic T, Pesavento JJ, et al. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–258. doi:10.1016/j.molcel.2009.12.030. PMID:20122406
  • Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5:a010371. doi:10.1101/cshperspect.a010371. PMID:23881938
  • McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998;93:1043–1053. doi:10.1016/S0092-8674(00)81209-X. PMID:9635433
  • Frigola J, Remus D, Mehanna A, et al. ATPase-dependent quality control of DNA replication origin licensing. Nature. 2013;495:339–343. doi:10.1038/nature11920. PMID:23474987
  • Sun J, Evrin C, Samel SA, et al. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20:944–51. doi:10.1038/nsmb.2629. PMID:23851460
  • Ticau S, Friedman LJ, Ivica NA, et al. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell. 2015;161:513–525. doi:10.1016/j.cell.2015.03.012. PMID:25892223
  • Wyrick JJ, Aparicio JG, Chen T, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001;294:2357–2360. doi:10.1126/science.1066101. PMID:11743203
  • Aparicio OM, Weinstein DM, Bell SP. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell. 1997;91:59–69. doi:10.1016/S0092-8674(01)80009-X. PMID:9335335
  • Tanaka T, Knapp D, Nasmyth K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell. 1997;90:649–660. doi:10.1016/S0092-8674(00)80526-7. PMID:9288745
  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333–374. doi:10.1146/annurev.biochem.71.110601.135425. PMID:12045100
  • Bowers JL, Randell JC, Chen S, et al. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16:967–978. doi:10.1016/j.molcel.2004.11.038. PMID:15610739
  • Coster G, Frigola J, Beuron F, et al. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell. 2014;55:666–677. doi:10.1016/j.molcel.2014.06.034. PMID:25087873
  • Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell. 2014;55:655–665. doi:10.1016/j.molcel.2014.06.033. PMID:25087876
  • Chang F, Riera A, Evrin C, et al. Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication. Elife. 2015;4. doi:10.7554/eLife.05795.
  • Samel SA, Fernandez-Cid A, Sun J, et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014;28:1653–1666. doi:10.1101/gad.242404.114. PMID:25085418
  • Ticau S, Friedman LJ, Champasa K, et al. Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat Struct Mol Biol. 2017;24:309–315. doi:10.1038/nsmb.3375. PMID:28191892
  • Gillespie PJ, Li A, Blow JJ. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem. 2001;2:15. doi:10.1186/1471-2091-2-15. PMID:11737877
  • Frolova NS, Schek N, Tikhmyanova N, et al. Xenopus Cdc6 performs separate functions in initiating DNA replication. Mol Biol Cell. 2002;13:1298–1312. doi:10.1091/mbc.01-08-0382. PMID:11950940
  • Oehlmann M, Score AJ, Blow JJ. The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. J Cell Biol. 2004;165:181–190. doi:10.1083/jcb.200311044. PMID:15096526
  • Donovan S, Harwood J, Drury LS, et al. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A. 1997;94:5611–5616. doi:10.1073/pnas.94.11.5611. PMID:9159120
  • Mahbubani HM, Chong JP, Chevalier S, et al. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol. 1997;136:125–35. doi:10.1083/jcb.136.1.125. PMID:9008708
  • Burkhart R, Schulte D, Hu D, et al. Interactions of human nuclear proteins P1Mcm3 and P1Cdc46. Eur J Biochem. 1995;228:431–438. doi:10.1111/j.1432-1033.1995.tb20281.x. PMID:7705359
  • Powell SK, MacAlpine HK, Prinz JA, et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. EMBO J. 2015;34:531–543. doi:10.15252/embj.201488307. PMID:25555795
  • Ritzi M, Baack M, Musahl C, et al. Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J Biol Chem. 1998;273:24543–24549. doi:10.1074/jbc.273.38.24543. PMID:9733749
  • Woodward AM, Gohler T, Luciani MG, et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173:673–683. doi:10.1083/jcb.200602108. PMID:16754955
  • Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci. 2011;36:405–414. doi:10.1016/j.tibs.2011.05.002. PMID:21641805
  • Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21:3331–3341. doi:10.1101/gad.457807. PMID:18079179
  • Edwards MC, Tutter AV, Cvetic C, et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem. 2002;277:33049–33057. doi:10.1074/jbc.M204438200. PMID:12087101
  • Harvey KJ, Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol Cell Biol. 2003;23:6769–6779. doi:10.1128/MCB.23.19.6769-6779.2003. PMID:12972597
  • Hyrien O. How MCM loading and spreading specify eukaryotic DNA replication initiation sites. F1000Res. 2016;5. doi:10.12688/f1000research.9008.1. PMID:27635237
  • Waga S, Zembutsu A. Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem. 2006;281:10926–10934. doi:10.1074/jbc.M600299200. PMID:16497662
  • Ode KL, Fujimoto K, Kubota Y, et al. Inter-origin cooperativity of geminin action establishes an all-or-none switch for replication origin licensing. Genes Cells. 2011;16:380–396. doi:10.1111/j.1365-2443.2011.01501.x. PMID:21426446
  • Wuhr M, Freeman RM, Jr, Presler M, et al. Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Curr Biol. 2014;24:1467–1475. doi:10.1016/j.cub.2014.05.044. PMID:24954049
  • Shinya M, Machiki D, Henrich T, et al. Evolutionary diversification of MCM3 genes in Xenopus laevis and Danio rerio. Cell Cycle. 2014;13:3271–3281. doi:10.4161/15384101.2014.954445. PMID:25485507
  • Phillips RKJ, Theriot J, Garcia HG. Physical Biology of the Cell. Garland Sci. 2013.
  • Li N, Zhai Y, Zhang Y, et al. Structure of the eukaryotic MCM complex at 3.8 A. Nature. 2015;524:186–191. doi:10.1038/nature14685. PMID:26222030
  • Rowles A, Tada S, Blow JJ. Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci. 1999;112(Pt 12):2011–2018. PMID:10341218
  • Gardner NJ, Gillespie PJ, Carrington JT, et al. The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chem Biol. 24:981–992 e4. PMID:28781123
  • Sanuki Y, Kubota Y, Kanemaki MT, et al. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle. 2015;14:1010–1023. doi:10.1080/15384101.2015.1007003. PMID:25602506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.