1,420
Views
6
CrossRef citations to date
0
Altmetric
Reports

Bioinformatic analyses of microRNA-targeted genes and microarray-identified genes correlated with Barrett's esophagus

ORCID Icon, , ORCID Icon, , , , & show all
Pages 792-800 | Received 18 Oct 2017, Accepted 17 Jan 2018, Published online: 18 May 2018

References

  • Fock KM, Talley N, Goh KL, et al. Asia-Pacific consensus on the management of gastro-oesophageal reflux disease: an update focusing on refractory reflux disease and Barrett's oesophagus. Gut. 2016;65:1402–1415. doi:10.1136/gutjnl-2016-311715. PMID:27261337.
  • de Jonge PJ, van Blankenstein M, Grady WM, et al. Barrett's oesophagus: epidemiology, cancer risk and implications for management. Gut. 2014;63:191–202. doi:10.1136/gutjnl-2013-305490. PMID:24092861.
  • Brown CS, Ujiki MB. Risk factors affecting the Barrett's metaplasia-dysplasia-neoplasia sequence. World J Gastroint Endosc. 2015;7:438–445. doi:10.4253/wjge.v7.i5.438. PMID:25992184.
  • Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Gene Dev. 2004;18:504–511. doi:10.1101/gad.1184404.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233. doi:10.1016/j.cell.2009.01.002. PMID:19167326.
  • Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466:1105–1109. doi:10.1038/nature09271. PMID:20622856.
  • Guo F, Tian J, Lin Y, et al. Serum microRNA-92 expression in patients with ovarian epithelial carcinoma. J Int Med Res. 2013;41:1456–1461. doi:10.1177/0300060513487652. PMID:23963852.
  • Peng WZ, Ma R, Wang F, et al. Role of miR-191/425 cluster in tumorigenesis and diagnosis of gastric cancer. Int Journal Mol Sci. 2014;15:4031–4048. doi:10.3390/ijms15034031. PMID:24603541.
  • Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscipl Rev RNA. 2012;3:601–616. doi:10.1002/wrna.1120. PMID:22566380.
  • Leidner RS, Ravi L, Leahy P, et al. The microRNAs, MiR-31 and MiR-375, as candidate markers in Barrett's esophageal carcinogenesis. Genes Chromosom Canc. 2012;51:473–479. doi:10.1002/gcc.21934.
  • Slaby O, Srovnal J, Radova L, et al. Dynamic changes in microRNA expression profiles reflect progression of Barrett's esophagus to esophageal adenocarcinoma. Carcinogenesis. 2015;36:521–527. doi:10.1093/carcin/bgv023. PMID:25784377.
  • Kan T, Meltzer SJ. MicroRNAs in Barrett's esophagus and esophageal adenocarcinoma. Current Opin Pharmacol. 2009;9:727–732. doi:10.1016/j.coph.2009.08.009. PMID:19773200.
  • Luzna P, Gregar J, Uberall I, et al. Changes of microRNAs-192, 196a and 203 correlate with Barrett's esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol. 2011;6:114. doi:10.1186/1746-1596-6-114. PMID:22094011.
  • Bansal A, Gupta V, Wang K. MicroRNA expression signatures during malignant progression from Barrett's esophagus. J Cell Biochem. 2016;117:1288–1295. doi:10.1002/jcb.25497. PMID:26808728.
  • van Baal JW, Verbeek RE, Bus P, et al. microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6. Gut. 2013;62:664–675. doi:10.1136/gutjnl-2011-301061. PMID:22504665.
  • Bus P, Kestens C, Ten Kate FJ, et al. Profiling of circulating microRNAs in patients with Barrett's esophagus and esophageal adenocarcinoma. J Gastroenterol. 2016;51:560–570. doi:10.1007/s00535-015-1133-5. PMID:26585599.
  • Cabibi D, Caruso S, Bazan V, et al. Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus. Oncotarget. 2016;7:47821–47830. doi:10.18632/oncotarget.10291. PMID:27374102.
  • Yang H, Gu J, Wang KK, et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15:5744–5752. doi:10.1158/1078-0432.CCR-09-0385. PMID:19737949.
  • Wijnhoven BP, Hussey DJ, Watson DI, et al. South Australian oesophageal research G. MicroRNA profiling of Barrett's oesophagus and oesophageal adenocarcinoma. British J Surg. 2010;97:853–861. doi:10.1002/bjs.7000. PMID:20301167.
  • Fassan M, Volinia S, Palatini J, et al. MicroRNA expression profiling in human Barrett's carcinogenesis. Int J Cancer. 2011;129:1661–1670. doi:10.1002/ijc.25823. PMID:21128279.
  • Fassan M, Volinia S, Palatini J, et al. MicroRNA expression profiling in the histological subtypes of Barrett's Metaplasia. Clin Transl Gastroenterol. 2013;4:e34. doi:10.1038/ctg.2013.5. PMID:23677165.
  • Mathe EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clinical Cancer Res Off J Am Assoc Cancer Res. 2009;15:6192–6200. doi:10.1158/1078-0432.CCR-09-1467. PMID:19789312.
  • Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–3310. doi:10.1038/sj.onc.1210422. PMID:17496923.
  • Looby E, Abdel-Latif MM, Athie-Morales V, et al. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells. BMC Cancer. 2009;9:190. doi:10.1186/1471-2407-9-190. PMID:19534809.
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi:10.1038/nm0603-669. PMID:12778165.
  • Zhang Q, Yu C, Peng S, et al. Autocrine VEGF signaling promotes proliferation of neoplastic Barrett's epithelial cells through a PLC-dependent pathway. Gastroenterology. 2014;146:461–472. e6. doi:10.1053/j.gastro.2013.10.011. PMID:24120473.
  • Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101:1900–1920. quiz 43. doi:10.1111/j.1572-0241.2006.00630.x. PMID:16928254.
  • Shaheen NJ. Falk GW, Iyer PG, Gerson LB, American College of G. ACG Clinical Guideline: diagnosis and management of Barrett's Esophagus. Am J Gastroenterol. 2016;111:30–50. quiz 1. doi:10.1038/ajg.2015.322. PMID:26526079.
  • Poehlmann A, Kuester D, Malfertheiner P, et al. Inflammation and Barrett's carcinogenesis. Pathol Res Pract. 2012;208:269–280. doi:10.1016/j.prp.2012.03.007. PMID:22541897.
  • Mavrakis KJ, Van Der Meulen J, Wolfe AL, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43:673–678. doi:10.1038/ng.858. PMID:21642990.
  • Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer. 2008;122:963–968. doi:10.1002/ijc.23325. PMID:18098137.
  • Chen H, Zhang Z, Lu Y, et al. Downregulation of ULK1 by microRNA-372 inhibits the survival of human pancreatic adenocarcinoma cells. Cancer Sci. 2017;108:1811–1819. doi:10.1111/cas.13315. PMID:28677209.
  • Dijckmeester WA, Wijnhoven BP, Watson DI, et al. MicroRNA-143 and -205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett's esophagus. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2009;13:846–853. doi:10.1007/s11605-009-0799-5. PMID:19190970.
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acid Res. 2013;41:D991–D995. doi:10.1093/nar/gks1193. PMID:23193258.
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi:10.1038/nprot.2008.211. PMID:19131956.
  • Yi R, O'Carroll D, Pasolli HA, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006;38:356–362. doi:10.1038/ng1744. PMID:16462742.
  • Tran N, McLean T, Zhang X, et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Bioph Res Commun. 2007;358:12–17. doi:10.1016/j.bbrc.2007.03.201. PMID:17475218.
  • Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–229. doi:10.1038/nature06642. PMID:18311128.
  • Braun CJ, Zhang X, Savelyeva I, et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008;68:10094–10104. doi:10.1158/0008-5472.CAN-08-1569. PMID:19074875.
  • Oliveira AC, Bovolenta LA, Nachtigall PG, et al. Combining results from distinct MicroRNA target prediction tools enhances the performance of analyses. Front Genet. 2017;8:59. doi:10.3389/fgene.2017.00059. PMID:28559915.
  • Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17:1987. doi:10.3390/ijms17121987. PMID: 27941681.
  • Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23. doi:10.3389/fgene.2014.00023. PMID: 24600468.
  • Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol. 2015;89:867–882. doi:10.1007/s00204-015-1472-2. PMID: 25690731.
  • Souza RF, Shewmake K, Terada LS, et al. Acid exposure activates the mitogen-activated protein kinase pathways in Barrett's esophagus. Gastroenterology. 2002;122:299–307. doi:10.1053/gast.2002.30993. PMID: 11832445.
  • Griffiths EA, Pritchard SA, McGrath SM, et al. Increasing expression of hypoxia-inducible proteins in the Barrett's metaplasia-dysplasia-adenocarcinoma sequence. Brit J Cancer. 2007;96:1377–1383. doi:10.1038/sj.bjc.6603744. PMID: 17437013.
  • Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis. New Engl J Med. 2008;359:2720–2722. doi:10.1056/NEJMe0808667. PMID: 19092157.
  • Cai C, Rajaram M, Zhou X, et al. Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene FNDC3B. Cell Cycle. 2012;11:1773–1781. doi:10.4161/cc.20121. PMID: 22510613.
  • Xu H, Hu Y, Qiu W. Potential mechanisms of microRNA-129-5p in inhibiting cell processes including viability, proliferation, migration and invasiveness of glioblastoma cells U87 through targeting FNDC3B. Biomed Pharmac Biomed Pharmacotherapie. 2017;87:405–411. doi:10.1016/j.biopha.2016.12.100.
  • Wang Y, Barbacioru C, Hyland F, et al. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genom. 2006;7:59. doi:10.1186/1471-2164-7-59. PMID: 16551369.
  • Gregory Alvord W, Roayaei JA, Quinones OA, et al. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R. Briefings Bioinform. 2007;8:415–431. doi:10.1093/bib/bbm043. PMID: 17906332.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303. PMID: 14597658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.