1,199
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity?

, , , , &
Pages 1173-1187 | Received 07 Dec 2017, Accepted 08 Apr 2018, Published online: 15 Jul 2018

References

  • Kirkwood TBL, Austad SN. Why do we age? Nature. 2000;408:233–238.
  • Fabrizio P, Longo VD. The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2003;2:73–81.
  • MacLean M, Harris N, Piper PW. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast. 2001;18:499–509.
  • Lefevre SD, Kumar S. van der Klei IJ. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan. Cell Cycle. 2015;14:1698–1703.
  • Longo VD, Shadel GS, Kaeberlein M, et al. Replicative and Chronological Aging in Saccharomyces cerevisiae. Cell Metabolism. 2012;16:18–31.
  • Arlia-Ciommo A, Piano A, Leonov A, et al. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle. 2014;13:3336–3349.
  • Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology. 2018;19:67–79.
  • Mortimer RK, Johnston JR. LIFE SPAN OF INDIVIDUAL YEAST CELLS. Nature. 1959;183:1751–1752.
  • Kennedy BK, Austriaco NR, Guarente L. DAUGHTER CELLS OF SACCHAROMYCES-CEREVISIAE FROM OLD MOTHERS DISPLAY A REDUCED LIFE-SPAN. J Biol. 1994;127:1985–1993.
  • Henderson KA, Gottschling DE. A mother’s sacrifice: what is she keeping for herself? Curr Opin Cell Biol. 2008;20:723–728.
  • Sinclair DA, Guarente L. Extrachromosomal rDNA circles - A cause of aging in yeast. Cell. 1997;91:1033–1042.
  • Kobayashi T. A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. Bioessays. 2008;30:267–272.
  • Aguilaniu H, Gustafsson L, Rigoulet M, et al. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science. 2003;299:1751–1753.
  • Woo DK, Poyton RO. The absence of a mitochondrial genome in rho(0) yeast cells extends lifespan independently of retrograde regulation. Exp Gerontol. 2009;44:390–397.
  • Bilinski T, Bartosz G. Hypothesis: cell volume limits cell divisions. Acta Biochimica Polonica. 2006;53:833–835.
  • Bilinski T, Zadrag-Tecza R, Bartosz G. Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res. 2012;12:97–101.
  • Barton AA. Some aspects of cell division in Saccharomyces-cerevisiae. J Gen Microbiol. 1950;4:84–86.
  • Bartholomew JW, Mittwer T. Demonstration of yeast bud scars with the electron microscope. J Bacteriol. 1953;65:272–275.
  • Molon M, Szajwaj M, Tchorzewski M, et al. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. Age. 2016;38:1–15.
  • Zadrag-Tecza R, Kwolek-Mirek M, Bartosz G, et al. Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology. 2009;10:481–488.
  • Molon M, Zadrag-Tecza R. The links between hypertrophy, reproductive potential and longevity in the Saccharomyces cerevisiae yeast. Acta Biochimica Polonica. 2016;63:329–334.
  • Yang JY, Dungrawala H, Hua H, et al. Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle. 2011;10:144–155.
  • Egilmez NK, Jazwinski SM. EVIDENCE FOR THE INVOLVEMENT OF A CYTOPLASMIC FACTOR IN THE AGING OF THE YEAST SACCHAROMYCES-CEREVISIAE. J Bacteriol. 1989;171:37–42.
  • Lee SS, Avalos Vizcarra I, Huberts D, et al. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A. 2012;109:4916–4920.
  • Xie ZW, Zhang Y, Zou K, et al. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell. 2012;11:599–606.
  • Smeal T, Claus J, Kennedy B, et al. Loss of transcriptional silencing causes sterility in old mother cells of S-cerevisiae. Cell. 1996;84:633–642.
  • Muller I. PARENTAL AGE AND THE LIFE-SPAN OF ZYGOTES OF SACCHAROMYCES-CEREVISIAE. Antonie Van Leeuwenhoek Journal of Microbiology. 1985;51:1–10.
  • Tang FS, Watkins JW, Bermudez M, et al. A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery. Autophagy. 2008;4:874–886.
  • Veatch JR, McMurray MA, Nelson ZW, et al. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. 2009;137:1247–1258.
  • Dang WW, Steffen KK, Perry R, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009;459:802–U2.
  • Lippuner AD, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev. 2014;38:300–325.
  • Unal E, Kinde B, Amon A. Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science. 2011;332:1554–1557.
  • Sherman F, Fink GR, Hicks JB. Methods in yeast genetics: a laboratory manual. Plainview, NY: Cold Spring Harbor Laboratory Press; 1994.
  • Baruffini E, Ferrero I, Foury F. In vivo analysis of mtDNA replication defects in yeast. Methods. 2010;51(4):426–436.
  • Molon M, Zebrowski J. Phylogenetic relationship and Fourier-transform infrared spectroscopy-derived lipid determinants of lifespan parameters in the Saccharomyces cerevisiae yeast. FEMS Yeast Res. 2017;17:1–10.
  • Minois N, Frajnt M, Wilson C, et al. Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2005;102:402–406.
  • Lewinska A, Miedziak B, Wnuk M. Assessment of yeast chromosome XII instability: single chromosome comet assay. Fungal Genet Biol. 2014;63:9–16.
  • Azevedo F, Marques F, Fokt H, et al. Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast. 2011;28(1):55–61.
  • Lingjaerde OC, Baumbusch LO, Liestol K, et al. CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics. 2005;21:821–822.
  • Wnuk M, Miedziak B, Kulak K, et al. Single-cell analysis of aneuploidy events using yeast whole chromosome painting probes (WCPPs). J Microbiol Methods. 2015;111:40–49.
  • Lewinska A, Miedziak B, Kulak K, et al. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae. Biogerontology. 2014;15:289–316.
  • Wawiorka L, Molestak E, Szajwaj M, et al. Multiplication of ribosomal P-stalk proteins contributes to the fidelity of translation. Mol Cell Biol. 2017;37.
  • Warner JR, Mitra G, Schwindinger WF, et al. Saccharomyces-cerevisiae coordinates accumulation of yeast ribosomal-proteins by modulating messenger-rna splicing, translational initiation, and protein-turnover. Mol Cell Biol. 1985;5:1512–1521.
  • Matecic M, Smith DL, Pan XW, et al. A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet. 2010;6.
  • Cabib E, Drgonova J, Drgon T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem. 1998;67:307–333.
  • Clay L, Caudron F, Denoth-Lippuner A, et al. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Elife. 2014;3.
  • Petes TD. YEAST RIBOSOMAL DNA GENES ARE LOCATED ON CHROMOSOME-XII. Proc Natl Acad Sci U S A. 1979;76:410–414.
  • Kim YH, Ishikawa D, Ha HP, et al. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res. 2006;34:2914–2924.
  • Molon M, Zadrag-Tecza R, Bilinski T. The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochem Biophys Res Commun. 2015;460:651–656.
  • Molon M, Zadrag-Tecza R. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology. 2016;17:347–357.
  • Lai CY, Jaruga E, Borghouts C, et al. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics. 2002;162:73–87.
  • Jazwinski SM. Yeast replicative life span the mitochondrial connection. FEMS Yeast Res. 2004;5:119–125.
  • Lindstrom DL, Leverich CK, Henderson KA, et al. Replicative age induces mitotic recombination in the ribosomal rna gene cluster of Saccharomyces cerevisiae. PLoS Genet. 2011;7:1–13.
  • Kirchman PA, Kim S, Lai CY, et al. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics. 1999;152:179–190.
  • Miceli MV, Jiang JC, Tiwari A, et al. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front Genet. 2012;102:1–11.
  • Barros MH, Bandy B, Tahara EB, et al. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem. 2004;279:49883–4988810.
  • Kaeberlein M, Kirkland KT, Fields S, et al. Genes determining yeast replicative life span in a long-lived genetic background. Mechanism of Ageing and Development. 2005;126:491–504.
  • Kaeberlein M, Hu D, Kerr EO, et al. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 2005;1:614–621.
  • Lynch M, Sung W, Morris K, et al. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A. 2008;105:9272–9277.
  • Breitenbach M, Laun P, Dickinson JR, et al. The role of mitochondria in the aging processes of yeast. Aging Research in Yeast. 2012;57:55–78.
  • Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med. 2015;82:73–104.
  • Zadrag-Tecza R, Molon M, Mamczur J, et al. Dependence of the yeast Saccharomyces cerevisiae post-reproductive lifespan on the reproductive potential. Acta Biochimica Polonica. 2013;60:111–115.
  • Grummt I. The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–497.
  • Guarente L. Link between aging and the nucleolus. Genes Dev. 1997;11:2449–2455.
  • Johnson FB, Marciniak RA, Guarente L. Telomeres, the nucleolus and aging. Curr Opin Cell Biol. 1998;10:332–338.
  • Steffen KK, MacKay VL, Kerr EO, et al. Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell. 2008;133:292–302.
  • Motizuki M, Tsurugi K. THE EFFECT OF AGING ON PROTEIN-SYNTHESIS IN THE YEAST SACCHAROMYCES-CEREVISIAE. Mech Ageing Dev. 1992;64:235–245.
  • Ganley ARD, Ide S, Saka K, et al. The effect of replication initiation on gene amplification in the rdna and its relationship to aging. Mol Cell. 2009;35:683–693.
  • Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007;17:184–191.
  • Shcheprova Z, Baldi S, Frei SB, et al. A mechanism for asymmetric segregation of age during yeast budding. Nature. 2008;454:728–734.
  • Park PU, Defossez PA, Guarente L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:3848–3856.
  • Poole AM, Kobayashi T, Ganley ARD. A positive role for yeast extrachromosomal rDNA circles? Bioessays. 2012;34:725–729.
  • Guarente L. Do changes in chromosomes cause aging? Cell. 1996;86:9–12.
  • Kobayashi T. How does genome instability affect lifespan? Genes to Cells. 2011;16:617–624.
  • Saka K, Ide S, Ganley ARD, et al. Cellular senescence in yeast is regulated by rDNA noncoding transcription. Curr Biol. 2013;23:1794–1798.
  • Zadrag-Tecza R, Skoneczna A. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: common or separate mechanisms of regulation? Exp Gerontol. 2016;84:29–39.
  • Failla G. THE AGING PROCESS AND CANCEROGENESIS. Ann N Y Acad Sci. 1958;71:1124–1140.
  • Szilard L. ON THE NATURE OF THE AGING PROCESS. Proc Natl Acad Sci U S A. 1959;45:30–45.
  • Andressoo JO, Hoeijmakers JHJ, Mitchell JR. Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle. 2006;5:2886–2888.
  • Gorbunova V, Seluanov A, Mao Z, et al. Changes in DNA repair during aging. Nucleic Acids Res. 2007;35:7466–7474.
  • Kaya A, Lobanov AV, Gladyshev VN. Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Aging Cell. 2015;14:366–371.
  • McMurray MA, Gottschling DE. An age-induced switch to a hyper-recombinational state. Science. 2003;301:1908–1911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.