947
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila

, ORCID Icon, , , & ORCID Icon
Pages 1708-1720 | Received 02 Jan 2018, Accepted 21 Jun 2018, Published online: 01 Aug 2018

References

  • Khaleghpour K, Svitkin YV, Craig AW, et al. Translational repression by a novel partner of human poly(A) binding protein. Paip2 Mol Cell. 2001;7(1):205–216. PMID: 11172725.
  • Kozlov G, Trempe JF, Khaleghpour K, et al. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A. 2001;98(8):4409–4413. PMID: 11287632.
  • Karim MM, Svitkin YV, Kahvejian A, et al. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc Natl Acad Sci U S A. 2006;103(25):9494–9499. PMID: 16772376.
  • Khaleghpour K, Kahvejian A, De Crescenzo G, et al. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol Cell Biol. 2001;21(15):5200–5213. PMID: 11438674.
  • Polacek C, Friebe P, Harris E. Poly(A)-binding protein binds to the non-polyadenylated 3ʹ untranslated region of dengue virus and modulates translation efficiency. PMID: 19218215 J Gen Virol. 2009;90Pt3:687–692.
  • Onesto C, Berra E, Grepin R, et al. Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem. 2004;279(33):34217–34226. PMID: 15175342.
  • Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 2011;20(4):731–751. PMID: 21118894.
  • Gouyon F, Onesto C, Dalet V, et al. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2. Biochem J. 2003;375(Pt1):167–174. PMID: 12820898.
  • Rosenfeld AB. Suppression of cellular transformation by poly (A) binding protein interacting protein 2 (Paip2). PMID: 21957478 PLoS One. 2011;69:e25116.
  • Roy G, Miron M, Khaleghpour K, et al. The Drosophila poly(A) binding protein-interacting protein, dPaip2, is a novel effector of cell growth. Mol Cell Biol. 2004;24(3):1143–1154. PMID: 14729960.
  • Khoutorsky A, Yanagiya A, Gkogkas CG, et al. Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron. 2013;78(2):298–311. PMID: 23622065.
  • Delbes G, Yanagiya A, Sonenberg N, et al. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod. 2012;86(3):95. PMID: 22190698.
  • Yanagiya A, Delbes G, Svitkin YV, et al. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J Clin Invest. 2010;120(9):3389–3400. PMID: 20739757.
  • Attrill H, Falls K, Goodman JL, et al. FlyBase: establishing a gene group resource for Drosophila melanogaster. Nucleic Acids Res. 2016;44(D1):D786–92. PMID: 26467478.
  • Huang KL, Chadee AB, Chen CY, et al. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA. 2013;19(3):295–305. PMID: 23340509.
  • Kibanov MV, Gvozdev VA, Olenina LV. Germ granules in spermatogenesis of Drosophila: evidences of contribution to the piRNA silencing. PMID: 22808315 Commun Integr Biol. 2012;52:130–133.
  • White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. PMID: 19755484 Reproduction. 2010;1391:11–21.
  • White-Cooper H, Davidson I. Unique aspects of transcription regulation in male germ cells. Cold Spring Harb Perspect Biol. 2011;3(7). PMID: 21555408. DOI: 10.1101/cshperspect.a002626
  • Xu S, Hafer N, Agunwamba B, et al. The CPEB protein Orb2 has multiple functions during spermatogenesis in Drosophila melanogaster. PLoS Genet. 2012;8(11):e1003079. PMID: 23209437.
  • Graveley BR, Brooks AN, Carlson JW, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473–479. PMID: 21179090.
  • Pritchard DK, Schubiger G. Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev. 1996;10(9): 1131–1142. PMID: 8654928.
  • Armstrong JA, Papoulas O, Daubresse G, et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 2002;21(19):5245–5254. PMID: 12356740.
  • Carney GE, Wade AA, Sapra R, et al. DHR3, an ecdysone-inducible early-late gene encoding a Drosophila nuclear receptor, is required for embryogenesis. Proc Natl Acad Sci U S A. 1997;94(22):12024–12029. PMID: 9342356.
  • Mazina MY, Nikolenko JV, Fursova NA, et al. Early-late genes of the ecdysone cascade as models for transcriptional studies. Cell Cycle. 2015;14(22):3593–3601. PMID: 26506480.
  • Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26(19):2119–2137.
  • Kopytova DV, Orlova AV, Krasnov AN, et al. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 2010;24(1):86–96. PMID: 20048002.
  • Mitchell SF, Parker R. Principles and properties of eukaryotic mRNPs. PMID: 24856220 Mol Cell. 2014;544:547–558.
  • Oeffinger M, Montpetit B. Emerging properties of nuclear RNP biogenesis and export. Curr Opin Cell Biol. 2015;34:46–53. PMID: 25938908.
  • Afonina E, Stauber R, Pavlakis GN. The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J Biol Chem. 1998;273(21): 13015–13021. PMID: 9582337.
  • Gray NK, Hrabalkova L, Scanlon JP, et al. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans. 2015;43(6):1277–1284. PMID: 26614673.
  • Hosoda N, Lejeune F, Maquat LE. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. PMID: 16581783 Mol Cell Biol. 2006;268:3085–3097.
  • Eisermann K, Dar JA, Dong J, et al. Poly (A) binding protein cytoplasmic 1 is a novel co-regulator of the androgen receptor. PLoS One. 2015;10(7):e0128495. PMID: 26176602.
  • Graham PL, Yanowitz JL, Penn JK, et al. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet. 2011;7(7):e1002185. PMID: 21829374.
  • Vera M, Pani B, Griffiths LA, et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife. 2014;(3):e03164. PMID: 25233275. DOI:10.7554/eLife.03164
  • Volpon L, Culjkovic-Kraljacic B, Sohn HS, et al. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA. 2017;23(6):927–937. PMID: 28325843.
  • McKendrick L, Thompson E, Ferreira J, et al. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol Cell Biol. 2001;21(11):3632–3641. PMID: 11340157.
  • Bjork P, Bauren G, Gelius B, et al. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci. 2003;116(Pt22):4521–4532. PMID: 14576346.
  • Ferraiuolo MA, Lee CS, Ler LW, et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A. 2004;101(12):4118–4123. PMID: 15024115.
  • Ainaoui N, Hantelys F, Renaud-Gabardos E, et al. Promoter-dependent translation controlled by p54nrb and hnRNPM during myoblast differentiation. PloS One. 2015;10(9):e0136466. PMID: 26332123.
  • Slobodin B, Han R, Calderone V, et al. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell. 2017;169(2):326–337e12. PMID: 28388414.
  • Trcek T, Larson DR, Moldon A, et al. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell. 2011;147(7):1484–1497. PMID: 22196726.
  • Zid BM, O’Shea EK. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. PMID: 25119046 Nature. 2014;5147520:117–121.
  • Barr J, Yakovlev KV, Shidlovskii Y, et al. Establishing and maintaining cell polarity with mRNA localization in Drosophila. BioEssays. 2016;38(3):244–253. PMID: 26773560.
  • Zappulo A, van den Bruck D, Ciolli Mattioli C, et al. RNA localization is a key determinant of neurite-enriched proteome. Nat Commun. 2017;8(1):583. PMID: 28928394.
  • Hendrickson D, Kelley DR, Tenen D, et al. Widespread RNA binding by chromatin-associated proteins. Genome Biol. 2016;17:28. PMID: 26883116.
  • He C, Sidoli S, Warneford-Thomson R, et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell. 2016;64(2):416–430. PMID: 27768875.
  • Blythe AJ, Yazar-Klosinski B, Webster MW, et al. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci. 2016;25(9):1710–1721. PMID: 27376968.
  • Georgiev PG, Gerasimova TI. Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol Gen Genet. 1989;220(1): 121–126. PMID: 2558282.
  • Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science. 1982;218(4570): 348–353. PMID: 6289436.
  • Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A. 2000;97(12):6499–6503. PMID: 10823906.
  • Duncan KE, Strein C, Hentze MW. The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA. PMID: 19941818 Mol Cell. 2009;364:571–582.
  • Lebedeva LA, Nabirochkina EN, Kurshakova MM, et al. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc Natl Acad Sci U S A. 2005;102(50):18087–18092. PMID: 16330756.
  • Kachaev ZM, Gilmutdinov RA, Kopytova DV, et al. RNA immunoprecipitation technique for Drosophila melanogaster S2 cells. Mol Biol (Moscow). 2017;51(1):72–79. PMID: 28251970.
  • Vorobyeva NE, Soshnikova NV, Nikolenko JV, et al. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc Natl Acad Sci U S A. 2009;106(27):11049–11054. PMID: 19541607.
  • Kibanov MV, Kotov AA, Olenina LV. Multicolor fluorescence imaging of whole-mount Drosophila testes for studying spermatogenesis. PMID: 23357237 Anal Biochem. 2013;4361:55–64.
  • Shidlovskii YV, Krasnov AN, Nikolenko JV, et al. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J. 2005;24(1):97–107. PMID: 15616585.
  • Johansen KM, Cai W, Deng H, et al. Polytene chromosome squash methods for studying transcription and epigenetic chromatin modification in Drosophila using antibodies. Methods. 2009;48(4):387–397. PMID: 19272452.
  • Georgieva S, Kirschner DB, Jagla T, et al. Two novel Drosophila TAF(II)s have homology with human TAF(II)30 and are differentially regulated during development. Mol Cell Biol. 2000;20(5):1639–1648. PMID: 10669741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.