1,475
Views
9
CrossRef citations to date
0
Altmetric
Review

BLM’s balancing act and the involvement of FANCJ in DNA repair

&
Pages 2207-2220 | Received 28 Jun 2018, Accepted 30 Aug 2018, Published online: 23 Sep 2018

References

  • Tripathi V, Agarwal H, Priya S, et al. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun. 2018 Mar 9;9(1):1016. PubMed PMID: 29523790; PubMed Central PMCID: PMCPMC5844875.
  • Ellis NA, Groden J, Ye TZ, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995 Nov 17;83(4):655–666. PubMed PMID: 7585968
  • German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine. 1993 Nov;72(6):393–406. PubMed PMID: 8231788.
  • Bohm S, Bernstein KA. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair. 2014 Oct;22:123–132. PubMed PMID: 25150915; PubMed Central PMCID: PMCPMC4175148.
  • Brosh RM. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer. 2013 07 11;13(8):542–558. . PubMed PMID: PMC4538698.
  • Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. . PubMed PMID: 20192759; PubMed Central PMCID: PMCPMC3079308.
  • McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008 Nov;24(11):529–538. . PubMed PMID: 18809224; PubMed Central PMCID: PMCPMC5303623.
  • Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008 Apr;9(4):297–308. . PubMed PMID: 18285803.
  • Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012 Aug 24;47(4):497–510. PubMed PMID: 22920291.
  • Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016 Jan;26(1):52–64. PubMed PMID: 26437586; PubMed Central PMCID: PMCPMC4862604.
  • Cheok CF, Bachrati CZ, Chan KL, et al. Roles of the Bloom’s syndrome helicase in the maintenance of genome stability. Biochem Soc Trans. 2005 Dec;33(6):1456–1459. PubMed PMID: 16246145.
  • Karow JK, Constantinou A, Li JL, et al. The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504–6508. PubMed PMID: 10823897; PubMed Central PMCID: PMCPMC18638.
  • Bachrati CZ, Borts RH, Hickson ID. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res. 2006;34(8):2269–2279. PubMed PMID: 16670433; PubMed Central PMCID: PMCPMC1456333.
  • Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003 Dec 18;426(6968):870–874. PubMed PMID: 14685245.
  • Nimonkar AV, Genschel J, Kinoshita E, et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 2011 Feb 15;25(4):350–362. PubMed PMID: 21325134; PubMed Central PMCID: PMCPMC3042158.
  • Gravel S, Chapman JR, Magill C, et al. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 2008 Oct 15;22(20):2767–2772. PubMed PMID: 18923075; PubMed Central PMCID: PMCPMC2569880.
  • Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature. 2008 Oct 9;455(7214):770–774. PubMed PMID: 18806779; PubMed Central PMCID: PMCPMC3818707.
  • Zhu Z, Chung WH, Shim EY, et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008 Sep 19;134(6):981–994. PubMed PMID: 18805091; PubMed Central PMCID: PMCPMC2662516.
  • Kumar R, Cheok CF. RIF1: a novel regulatory factor for DNA replication and DNA damage response signaling. DNA Repair. 2014 Mar;15:54–59. PubMed PMID: 24462468.
  • Grabarz A, Guirouilh-Barbat J, Barascu A, et al. A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining. Cell Rep. 2013 Oct 17;5(1):21–28. PubMed PMID: 24095737.
  • Shibata A, Conrad S, Birraux J, et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 2011 Mar 16;30(6):1079–1092. PubMed PMID: 21317870; PubMed Central PMCID: PMCPMC3061033.
  • Sfeir A, de Lange T. Removal of shelterin reveals the telomere end-protection problem. Science. 2012 May 4;336(6081):593–597. PubMed PMID: 22556254; PubMed Central PMCID: PMCPMC3477646.
  • Zimmermann M, Lottersberger F, Buonomo SB, et al. 53BP1 regulates DSB repair using Rif1 to control 5ʹ end resection. Science. 2013 Feb 8;339(6120):700–704. PubMed PMID: 23306437; PubMed Central PMCID: PMCPMC3664841.
  • Misenko SM, Patel DS, Her J, et al. DNA repair and cell cycle checkpoint defects in a mouse model of ‘BRCAness’ are partially rescued by 53BP1 deletion. Cell Cycle. 2018 May 15:1–11. DOI:10.1080/15384101.2018.1456295. PubMed PMID: 29620483.
  • Tripathi V, Nagarjuna T, Sengupta S. BLM helicase-dependent and -independent roles of 53BP1 during replication stress-mediated homologous recombination. J Cell Biol. 2007 Jul 2;178(1):9–14. . PubMed PMID: 17591918; PubMed Central PMCID: PMCPMC2064412.
  • Tripathi V, Kaur S, Sengupta S. Phosphorylation-dependent interactions of BLM and 53BP1 are required for their anti-recombinogenic roles during homologous recombination. Carcinogenesis. 2008 Jan;29(1):52–61. . PubMed PMID: 17984114; PubMed Central PMCID: PMCPMC2365705.
  • Bunting SF, Callen E, Wong N, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010 Apr 16;141(2):243–254. PubMed PMID: 20362325; PubMed Central PMCID: PMCPMC2857570.
  • Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res. 2016 Jun;788:7–11. PubMed PMID: 26926912; PubMed Central PMCID: PMCPMC4887407.
  • Brosh RM Jr., Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet. 2014;5:372. PubMed PMID: 25374583; PubMed Central PMCID: PMCPMC4204437.
  • Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001 Apr 6;105(1):149–160. PubMed PMID: 11301010
  • Wu Y, Brosh RM Jr. FANCJ helicase operates in the Fanconi Anemia DNA repair pathway and the response to replicational stress. Curr Mol Med. 2009 May;9(4):470–482. PubMed PMID: 19519404; PubMed Central PMCID: PMCPMC2763586.
  • Litman R, Peng M, Jin Z, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005 Sep;8(3):255–265. PubMed PMID: 16153896.
  • Levran O, Attwooll C, Henry RT, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet. 2005 Sep;37(9):931–933. PubMed PMID: 16116424.
  • Levitus M, Waisfisz Q, Godthelp BC, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J. Nat Genetics. 2005 Sep;37(9):934–935. PubMed PMID: 16116423.
  • Bridge WL, Vandenberg CJ, Franklin RJ, et al. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet. 2005 Sep;37(9):953–957. PubMed PMID: 16116421.
  • Deans AJ, West SC. FANCM connects the genome instability disorders Bloom’s Syndrome and Fanconi Anemia. Mol Cell. 2009 Dec 25;36(6):943–953. . PubMed PMID: 20064461.
  • Meetei AR, Sechi S, Wallisch M, et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol. 2003 May;23(10):3417–3426. PubMed PMID: 12724401; PubMed Central PMCID: PMCPMC164758.
  • Suhasini AN, Rawtani NA, Wu Y, et al. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom’s syndrome. EMBO J. 2011 Feb 16;30(4):692–705. PubMed PMID: 21240188; PubMed Central PMCID: PMCPMC3041957.
  • Wu W, Togashi Y, Johmura Y, et al. HP1 regulates the localization of FANCJ at sites of DNA double-strand breaks. Cancer Sci. 2016 Oct;107(10):1406–1415. PubMed PMID: 27399284; PubMed Central PMCID: PMCPMC5084677.
  • Suhasini AN, Sommers JA, Muniandy PA, et al. Fanconi anemia group J helicase and MRE11 nuclease interact to facilitate the DNA damage response. Mol Cell Biol. 2013 Jun;33(11):2212–2227. PubMed PMID: 23530059; PubMed Central PMCID: PMCPMC3648079.
  • Dohrn L, Salles D, Siehler SY, et al. BRCA1-mediated repression of mutagenic end-joining of DNA double-strand breaks requires complex formation with BACH1. Biochem J. 2012 Feb 1;441(3):919–926. PubMed PMID: 22032289.
  • Petermann E, Orta ML, Issaeva N, et al. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010 Feb 26;37(4):492–502. PubMed PMID: PMC2958316.
  • Syed A, Tainer JA. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018 Apr 25;87:263–294. PubMed PMID: 29709199.
  • Krejci L, Altmannova V, Spirek M, et al. Homologous recombination and its regulation. Nucleic Acids Res. 2012 July 1;40(13):5795–5818. PubMed PMID: PMC3401455.
  • Gupta R, Sharma S, Sommers JA, et al. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood. 2007 Oct 1;110(7):2390–2398. PubMed PMID: 17596542; PubMed Central PMCID: PMCPMC1988918.
  • Xie J, Peng M, Guillemette S, et al. FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response. PLoS Genet. 2012 Jul;8(7):e1002786. PubMed PMID: 22792074; PubMed Central PMCID: PMCPMC3390368.
  • Candelli A, Holthausen JT, Depken M, et al. Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15090–15095. PubMed PMID: 25288749; PubMed Central PMCID: PMCPMC4210327.
  • Bugreev DV, Yu X, Egelman EH, et al. Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev. 2007 Dec 01;21(23):3085–3094. PubMed PMID: 18003860; PubMed Central PMCID: PMCPMC2081975.
  • Patel DS, Misenko SM, Her J, et al. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. J Cell Biol. 2017 Nov 6;216(11):3521–3534. PubMed PMID: 28912125; PubMed Central PMCID: PMCPMC5674892.
  • Sommers JA, Rawtani N, Gupta R, et al. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem. 2009 Mar 20;284(12):7505–7517. PubMed PMID: 19150983; PubMed Central PMCID: PMCPMC2658046.
  • Wang Y, Cortez D, Yazdi P, et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000 Apr 15;14(8):927–939. PubMed PMID: 10783165; PubMed Central PMCID: PMCPMC316544
  • Chen L, Nievera CJ, Lee AY, et al. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 2008 Mar 21;283(12):7713–7720. PubMed PMID: 18171670.
  • Schlegel BP, Jodelka FM, Nunez R. BRCA1 promotes induction of ssDNA by ionizing radiation. Cancer Res. 2006 May 15;66(10):5181–5189. PubMed PMID: 16707442.
  • Bhattacharyya A, Ear US, Koller BH, et al. The breast cancer susceptibility gene BRCA1 Is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000 August 4;275(31):23899–23903. PubMed PMID: 10843985.
  • Xu X, Qiao W, Linke SP, et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet. 2001 07 01 online;28:266–271. PubMed PMID: 11431698.
  • Peng M, Litman R, Jin Z, et al. BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene. 2006 Apr 6;25(15):2245–2253. PubMed PMID: 16462773.
  • Greenberg RA, Sobhian B, Pathania S, et al. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 2006 Jan 1;20(1):34–46. PubMed PMID: 16391231; PubMed Central PMCID: PMCPMC1356099.
  • Yu X, Chini CC, He M, et al. The BRCT domain is a phospho-protein binding domain. Science. 2003 Oct 24;302(5645):639–642. PubMed PMID: 14576433.
  • Xie J, Litman R, Wang S, et al. Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to poleta-dependent bypass. Oncogene. 2010 Apr 29;29(17):2499–2508. PubMed PMID: 20173781; PubMed Central PMCID: PMCPMC2909592.
  • Cheok CF, Wu L, Garcia PL, et al. The Bloom’s syndrome helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids Res. 2005;33(12):3932–3941. . PubMed PMID: 16024743; PubMed Central PMCID: PMCPMC1176015.
  • Machwe A, Xiao L, Groden J, et al. RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange. J Biol Chem. 2005 Jun 17;280(24):23397–23407. PubMed PMID: 15845538.
  • Gupta R, Sharma S, Sommers JA, et al. Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem. 2005 Jul 08;280(27):25450–25460. PubMed PMID: 15878853.
  • Moder M, Velimezi G, Owusu M, et al. Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nat Commun. 2017 Nov 1;8(1):1238. PubMed PMID: 29089570; PubMed Central PMCID: PMCPMC5663702.
  • Davies SL, North PS, Dart A, et al. Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol. 2004 Feb;24(3):1279–1291. PubMed PMID: 14729972; PubMed Central PMCID: PMCPMC321429.
  • Wu Y, Shin-Ya K, Brosh RM Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol. 2008 Jun;28(12):4116–4128. . PubMed PMID: 18426915; PubMed Central PMCID: PMCPMC2423121.
  • London TB, Barber LJ, Mosedale G, et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem. 2008 Dec 26;283(52):36132–36139. PubMed PMID: 18978354; PubMed Central PMCID: PMCPMC2662291.
  • Sun H, Karow JK, Hickson ID, et al. The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem. 1998 Oct 16;273(42):27587–27592. PubMed PMID: 9765292
  • Wu WQ, Hou XM, Li M, et al. BLM unfolds G-quadruplexes in different structural environments through different mechanisms. Nucleic Acids Res. 2015 May 19;43(9):4614–4626. PubMed PMID: 25897130; PubMed Central PMCID: PMCPMC4482088.
  • Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012 Nov;13(11):770–780. . PubMed PMID: 23032257; PubMed Central PMCID: PMCPMC3725559.
  • Mendoza O, Bourdoncle A, J-B B, et al. G-quadruplexes and helicases. Nucleic Acids Res. 2016 Mar 18;44(5):1989–2006. PubMed PMID: PMC4797304.
  • Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol. 2015 Jul 20;210(2):191–208. . PubMed PMID: 26195664; PubMed Central PMCID: PMCPMC4508891.
  • Henderson A, Wu Y, Huang YC, et al. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res. 2014 Jan;42(2):860–869. PubMed PMID: 24163102; PubMed Central PMCID: PMCPMC3902944.
  • van Wietmarschen N, Merzouk S, Halsema N, et al. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nat Commun. 2018 Jan 18;9(1):271. PubMed PMID: 29348659; PubMed Central PMCID: PMCPMC5773480.
  • Sarkies P, Murat P, Phillips LG, et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 2012 Feb;40(4):1485–1498. PubMed PMID: 22021381; PubMed Central PMCID: PMCPMC3287192.
  • Bharti SK, Awate S, Banerjee T, et al. Getting ready for the dance: FANCJ irons out DNA wrinkles. Genes. 2016 Jul 1;7(7):31. PubMed PMID: 27376332; PubMed Central PMCID: PMCPMC4962001.
  • Bharti SK, Sommers JA, Awate S, et al. A minimal threshold of FANCJ helicase activity is required for its response to replication stress or double-strand break repair. Nucleic Acids Res. 2018 Jul 6; 46:6238-6256. PubMed PMID: 29788478.
  • Turley H, Wu L, Canamero M, et al. The distribution and expression of the Bloom’s syndrome gene product in normal and neoplastic human cells. Br J Cancer. 2001 Jul 20;85(2):261–265. PubMed PMID: 11461087; PubMed Central PMCID: PMCPMC2364038.
  • Hengel SR, Spies MA, Spies M. Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chemical Biology. 2017 Sep 21;24(9):1101–1119. PubMed PMID: 28938088; PubMed Central PMCID: PMCPMC5679738.
  • Velic D, Couturier AM, Ferreira MT, et al. DNA damage signalling and repair inhibitors: the long-sought-after achilles’ heel of cancer. Biomolecules. 2015 Nov 20;5(4):3204–3259. PubMed PMID: 26610585; PubMed Central PMCID: PMCPMC4693276.
  • Arora A, Abdel-Fatah TM, Agarwal D, et al. Transcriptomic and protein expression analysis reveals clinicopathological significance of bloom syndrome helicase (BLM) in breast cancer. Mol Cancer Ther. 2015 Apr;14(4):1057–1065. PubMed PMID: 25673821.
  • Panneerselvam J, Wang H, Zhang J, et al. BLM promotes the activation of Fanconi Anemia signaling pathway. Oncotarget. 2016 May 31;7(22):32351–32361. PubMed PMID: PMC5078018.
  • Kanchi KL, Johnson KJ, Lu C, et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 2014;5:3156. . PubMed PMID: 24448499; PubMed Central PMCID: PMCPMC4025965.
  • Birkbak NJ, Li Y, Pathania S, et al. Overexpression of BLM promotes DNA damage and increased sensitivity to platinum salts in triple-negative breast and serous ovarian cancers. Ann Oncol. 2018;29(4):903–909. PubMed PMID: 2945233.
  • De Nicolo A, Tancredi M, Lombardi G, et al. A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res. 2008 Jul 15;14(14):4672–4680. PubMed PMID: 18628483; PubMed Central PMCID: PMCPMC2561321.
  • Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006 Nov;38(11):1239–1241. PubMed PMID: 17033622.
  • Cantor S, Drapkin R, Zhang F, et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2357–2362. PubMed PMID: 14983014; PubMed Central PMCID: PMCPMC356955
  • Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015 Nov;107(11). DOI:10.1093/jnci/djv214. PubMed PMID: 26315354; PubMed Central PMCID: PMCPMC4643629.
  • Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011 10 02 online;43:1104. PubMed PMID: 21964575.
  • Weber-Lassalle N, Hauke J, Ramser J, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018 Jan 24;20(1):7. PubMed PMID: 29368626; PubMed Central PMCID: PMCPMC5784717.
  • German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997 01 01;93(1):100–106. PubMed PMID: 9062585.
  • Matsuzaki K, Borel V, Adelman CA, et al. FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway. Genes & Development.. 2015;29(24):2532–2546. PubMed PMID: 26637282.
  • Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res. 2016 Aug 19;44(14):6803–6816. . PubMed PMID: 27179029; PubMed Central PMCID: PMCPMC5001596.
  • Kaneko H, Inoue R, Yamada Y, et al. Microsatellite instability in B-cell lymphoma originating from Bloom syndrome. Int J Cancer. 1996 Dec 20;69(6):480–483. PubMed PMID: 8980251.
  • Nakanishi R, Kitao H, Fujinaka Y, et al. FANCJ expression predicts the response to 5-fluorouracil-based chemotherapy in MLH1-proficient colorectal cancer. Ann Surg Oncol. 2012 Oct;19(11):3627–3635. PubMed PMID: 22526901.
  • Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies [Review Article]. Nat Rev Cancer. 2003 May 01;3:330–338. PubMed PMID: 12724731.
  • Gruber SB, Ellis NA, Scott KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002 Sep 20;297(5589):2013. PubMed PMID: 12242432.
  • German J, Sanz MM, Ciocci S, et al. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum Mutat. 2007 Aug;28(8):743–753. PubMed PMID: 17407155.
  • Guo RB, Rigolet P, Ren H, et al. Structural and functional analyses of disease-causing missense mutations in Bloom syndrome protein. Nucleic Acids Res. 2007;35(18):6297–6310. PubMed PMID: 17878217; PubMed Central PMCID: PMCPMC2094094.
  • Xu YN, Bazeille N, Ding XY, et al. Multimeric BLM is dissociated upon ATP hydrolysis and functions as monomers in resolving DNA structures. Nucleic Acids Res. 2012 Oct;40(19):9802–9814. PubMed PMID: 22885301; PubMed Central PMCID: PMCPMC3479192.
  • Huber MD, Lee DC, Maizels N. G4 DNA unwinding by BLM and Sgs1p: substrate specificity and substrate-specific inhibition. Nucleic Acids Res. 2002 Sep 15;30(18):3954–3961. PubMed PMID: 12235379; PubMed Central PMCID: PMCPMC137114.
  • Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis. 2010;31(6):955–960. PubMed PMID: 20351092.
  • Shahrabani-Gargir L, Shomrat R, Yaron Y, et al. High frequency of a common Bloom syndrome Ashkenazi mutation among Jews of Polish origin. Genet Test. 1998;2(4):293–296. . PubMed PMID: 10464606.
  • Li L, Eng C, Desnick RJ, et al. Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. Mol Genet Metab. 1998 Aug;64(4):286–290. PubMed PMID: 9758720.
  • de Voer RM, Hahn MM, Mensenkamp AR, et al. Deleterious Germline BLM Mutations and the Risk for Early-onset Colorectal Cancer. Sci Rep. 2015 Sep 11;5:14060. . PubMed PMID: 26358404; PubMed Central PMCID: PMCPMC4566092.
  • Schayek H, Laitman Y, Katz LH, et al. Colorectal and endometrial cancer risk and age at diagnosis in BLMAsh mutation carriers. Isr Med Assoc Journal: IMAJ. 2017 Jun;19(6):365–367. PubMed PMID: 28647934.
  • Kee Y, D’Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 2010 Aug 15;24(16):1680–1694. . PubMed PMID: 20713514; PubMed Central PMCID: PMCPMC2922498.
  • National Organization For Rare Disorders. Rare disease information/bloom syndrome [ cited 2018 24 August]. Available from: https://rarediseases.org/rare-diseases/bloom-syndrome/
  • Tischkowitz MD, Hodgson SV. Fanconi anaemia. J Med Genet. 2003 Jan;40(1):1–10. PubMed PMID: 12525534; PubMed Central PMCID: PMCPMC1735271.
  • Wang AT, Smogorzewska A. SnapShot: fanconi anemia and associated proteins. Cell. 2015 Jan 15;160(1–2):354–354.e1. PubMed PMID: 25594185.
  • Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4–23. PubMed PMID: 28232778.
  • Bloom D. The syndrome of congenital telangiectatic erythema and stunted growth. J Pediatr. 1966 Jan;68(1):103–113. PubMed PMID: 5901336.
  • Dasi-Carpio A, Casado JA, Sanz G, et al. Clinical characteristics of patients with fanconi anemia in complementation Group J. Blood.2006;108(11):3769.
  • Ling C, Huang J, Yan Z, et al. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discovery. 2016;2:16047. . PubMed PMID: 28058110; PubMed Central PMCID: PMCPMC5167996.
  • Chaudhury I, Sareen A, Raghunandan M, et al. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 2013 Jul;41(13):6444–6459. PubMed PMID: 23658231; PubMed Central PMCID: PMCPMC3711430.
  • Hoadley KA, Xue Y, Ling C, et al. Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4437–4442. PubMed PMID: 22392978; PubMed Central PMCID: PMCPMC3311393.
  • Suhasini AN, Brosh RM Jr. Fanconi anemia and Bloom’s syndrome crosstalk through FANCJ-BLM helicase interaction. Trends Genet. 2012 Jan;28(1):7–13. . PubMed PMID: 22024395; PubMed Central PMCID: PMCPMC3249464.
  • van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–459. . PubMed PMID: 11701636.
  • Rudolf J, Makrantoni V, Ingledew WJ, et al. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell. 2006 Sep 15;23(6):801–808. PubMed PMID: 16973432.
  • Wu Y, Sommers JA, Suhasini AN, et al. Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood. 2010 Nov 11;116(19):3780–3791. PubMed PMID: 20639400; PubMed Central PMCID: PMCPMC2981534.
  • Karow JK, Chakraverty RK, Hickson ID. The Bloom’s syndrome gene product is a 3ʹ-5ʹ DNA helicase. J Biol Chem. 1997 Dec 5;272(49):30611–30614. PubMed PMID: 9388193.
  • Popuri V, Bachrati CZ, Muzzolini L, et al. The human RecQ Helicases, BLM and RECQ1, display distinct DNA substrate specificities. J Biol Chem. 2008 June 27;283(26):17766–17776. PubMed PMID: 18448429.
  • van Brabant AJ, Ye T, Sanz M, et al. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry. 2000 Nov 28;39(47):14617–14625. PubMed PMID: 11087418
  • Ralf C, Hickson ID, Wu L. The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem. 2006 Aug 11;281(32):22839–22846. . PubMed PMID: 16766518.
  • Machwe A, Xiao L, Groden J, et al. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry. 2006 Nov 28;45(47):13939–13946. PubMed PMID: 17115688.
  • Sharma S, Sommers JA, Wu L, et al. Stimulation of flap endonuclease-1 by the Bloom’s syndrome protein. J Biol Chem. 2004 Mar 12;279(11):9847–9856. PubMed PMID: 14688284.
  • Bharti SK, Sommers JA, George F, et al. Specialization among iron-sulfur cluster helicases to resolve g-quadruplex DNA structures that threaten genomic stability. J Biol Chem. 2013 September 27;288(39):28217–28229. PubMed PMID: 23935105.
  • Brosh RM Jr., Li JL, Kenny MK, et al. Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J Biol Chem. 2000 Aug 4;275(31):23500–23508. PubMed PMID: 10825162.
  • Doherty KM, Sommers JA, Gray MD, et al. Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem. 2005 Aug 19;280(33):29494–29505. PubMed PMID: 15965237.
  • Wu L, Davies SL, North PS, et al. The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem. 2000 Mar 31;275(13):9636–9644. PubMed PMID: 10734115
  • Johnson FB, Lombard DB, Neff NF, et al. Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res. 2000 Mar 1;60(5):1162–1167. PubMed PMID: 10728666
  • Sharma S, Sommers JA, Gary RK, et al. The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res. 2005;33(21):6769–6781. . PubMed PMID: 16326861; PubMed Central PMCID: PMCPMC1301591.
  • Wu L, Davies SL, Levitt NC, et al. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem. 2001 Jun 1;276(22):19375–19381. PubMed PMID: 11278509.
  • Nimonkar AV, Ozsoy AZ, Genschel J, et al. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16906–16911. PubMed PMID: 18971343; PubMed Central PMCID: PMCPMC2579351.
  • Gong Z, Kim JE, Leung CC, et al. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell. 2010 Feb 12;37(3):438–446. PubMed PMID: 20159562; PubMed Central PMCID: PMCPMC3695484.
  • Peng M, Litman R, Xie J, et al. The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J. 2007 Jul 11;26(13):3238–3249. PubMed PMID: 17581638; PubMed Central PMCID: PMCPMC1914102.
  • Traverso G, Bettegowda C, Kraus J, et al. Hyper-recombination and genetic instability in BLM-deficient epithelial cells. Cancer Res. 2003 Dec 15;63(24):8578–8581. PubMed PMID: 14695165

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.