1,153
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Antiviral bioactivity of renewable polysaccharides against Varicella Zoster

, &
Pages 3540-3549 | Received 16 May 2019, Accepted 28 Oct 2019, Published online: 14 Nov 2019

References

  • Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci USA. 1977;74:5716–5720.
  • Meyers JD, Wade JC, Mitchell CD, et al. Multicenter collaborative trial of intravenous acyclovir for treatment of mucocutaneous herpes simplex virus infection in the immunocompromised host. Am J Med. 1982;73:229–235.
  • Müller V, Chávez JH, Reginatto FH, et al. Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus. Phytother Res. 2007;21:970–974.
  • Khan MTH, Ather A, Thompson KD, et al. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res. 2005;67:107–119.
  • Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–1518.
  • Freer G, Pistello M. Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies. New Microbiol. 2018;41:95–105.
  • Sasivimolphan P, Lipipun V, Likhitwitayawuid K, et al. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antiviral Res. 2009;84:95–97.
  • Galetta KM, Gilden D. Zeroing in on zoster: A tale of many disorders produced by one virus. J Neurol Sci. 2015;358:38–45.
  • Docherty JJ, Sweet TJ, Bailey E, et al. Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Res. 2006;72:171–177.
  • Bao B, Meng Z, Li N, et al. Design, synthesis and antiviral activity studies of schizonepetin derivatives. Int J Mol Sci. 2013;14:17193–17203.
  • Field AK, Biron KK. “The end of innocence” revisited: resistance of herpesviruses to antiviral drugs. Clin Microbiol Rev. 1994;7:1–13.
  • Devrim I, Tezer H, Haliloğlu G, et al. Relapsing Herpes simplex virus encephalitis despite high-dose acyclovir therapy: a case report. Turk J Pediatr. 2008;50:380–382.
  • Picton SF, Flatt PR, McClenaghan NH. Differential acute and long term actions of succinic acid monomethyl ester exposure on insulin-secreting BRIN-BD11 cells. Int J Exp Diabetes Res. 2001;2:19–27.
  • Choi EJ, Lee CH, Kim YC, et al. Wogonin inhibits Varicella‑Zoster (shingles) virus replication via modulation of type I interferon signaling and adenosine monophosphate‑ activated protein kinase activity. J Funct Foods. 2015;17:399–409.
  • Gilden D, Mahalingam R, Nagel MA, et al. Review: the neurobiology of varicella zoster virus infection. Neuropathol Appl Neurobiol. 2011;37:441–463.
  • Yarmolinsky L, Zaccai M, Ben-Shabat S, et al. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. New Biotechnol. 2009;26:307–313.
  • Yarmolinsky L, Huleihel M, Zaccai M, et al. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia. 2012;83:362–367.
  • Clark A. Natural products as a resource for new drugs. Pharm Res. 1996;3:1133–1141.
  • Bailly C, Perrine D, Lacelot JC, et al. Sequence-selective binding to DNA of bis(amidinophenoxy)alkanes related to propamidine and pentamidine. Biochem J. 1997;323:23–31.
  • Baba M, Snoeck R, Pauwels R, et al. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32:1742–1745.
  • Ghosh T, Chattopadhyay K, Marschall M, et al. Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology. 2008;19:2–15.
  • Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, et al. Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res Int. 2015;825203. DOI:10.1155/2015/825203.
  • Jiao G, Yu G, Zhang J, et al. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–223.
  • Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012;10:2795–2816.
  • Harden EA, Falshaw R, Carnachan SM, et al. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res. 2009;83:282–289.
  • Huleihel M, Ishanu V, Tal J, et al. Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol. 2001;13:127–134.
  • Buck CB, Thompson CD, Roberts JN, et al. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog. 2006;2:e69.
  • Grassauer A, Weinmuellner R, Meier C, et al. Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J. 2008;5:107.
  • Zacharopoulos VR, Phillips DM. Vaginal formulations of carrageenan protect mice from herpes simplex virus infection. Clin Diagn LabImmunol. 1997;4:465–468.
  • Carlucci MJ, Scolaro LA, Noseda MD, et al. Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antiviral Res. 2004;64:137–141.
  • de Sf-tischer PC, Talarico LB, Noseda MD, et al. Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carb Polym. 2006;63:459–465.
  • Carlucci MJ, Pujol CA, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol. 1997;20:97–105.
  • Arad (Malis) S, Ginzberg A, Huleihel M. Antiviral activity of sulfated polysaccharides of marine red algae, . In: Fingerman M, editor. Recent advances in marine biotechnology: biomaterials from aquatic and terrestrial organisms. Enfield, UK,: Science Publishers Inc; 2006. p. 37–62.
  • Huleihel M, Ishanu V, Tal J, et al. Activity of porphyridium sp polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Meth. 2002;50:189–200.
  • Ehresmann D, Deig EF, Hatch MT. Antiviral properties of algal polysaccharides and related compounds. In: Hoppe H, Levring T, Tanaka Y, editors. Marine algae in pharmaceutical science. New York, NY: Walter de Gruyter; 1979. p. 293–302.
  • Marchetti M, Pisani S, Pietropaolo V, et al. Inhibition of herpes simplex virus infection by negatively charged and neutral carbohydrate polymers. J.Chemotherapy. 1995;7:90–96.
  • Guillard RRL. Culture of marine invertebrate animals. In: Smith, W.L., Chanley, M.H., editors. Culture of phytoplankton for feeding marine invertebrates. New York, NY: Plenum Book Publ. Corp.; 1975. p. 29–60.
  • Shi Y, Kornovski BS, Savani R, et al. A rapid, multiwell colorimetric assay for chemotaxis. J Immunol Methods. 1993;164:149–154.
  • Xu SY, Huang X, Cheong KL. Recent advances in marine algae polysaccharides: isolation, structure, and activities. Mar Drugs. 2017;15:388.
  • Arad (Malis) S, Levy-Ontman O. Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotech. 2010;21:358–364.
  • Bandyopadhyay SS, Navid MH, Ghosh T, et al. Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica. Phytochemistry. 2011;72:276–283.
  • Gomaa HHA, Elshoubaky GA. Antiviral activity of sulfated polysaccharides carrageenan from some marine seaweeds. Int J Curr Pharm Res. 2016;7:34–42.
  • Nanaki S, Karavas E, Kalantzi L, et al. Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained releasecarriers. Carb Polym. 2010;79:1157–1167.
  • De Ruiter GA, Rudolph B. Carrageenan biotechnology. Trends Food Sci Technol. 1997;8:389–395.
  • Arad (Malis) S, Levy-Ontman O. Sulfated polysaccharides in the cell wall of red microalgae. In: Sabu T, Dominique D, Christophe C, et al., editors. Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. Wiley-VCH, Verlag: John Wiley & Sons Ltd; 2013. p. 351–370.
  • Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–121.
  • Hebar A, Koller C, Seifert JM, et al. Non-clinical safety evaluation of intranasal iota-carrageenan. PLoS One. 2015;10:e0122911.
  • Leibbrandt A, Meier C, König-Schuster M, et al. Iota carrageenan is a potent inhibitor of influenza A virus infection. PLoS ONE. 2010;5:e14320.
  • Talarico LB, Damonte EB. Interference in dengue virus adsorption and uncoating by carrageenans. Virology. 2007;363:473–485.
  • Gonzalez ME, Alarcon B, Carrasco L. Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob Agents Chemother. 1987;31:1388–1393.
  • Girond S, Crance JM, Van Cuyck-Gandre H, et al. Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol. 1991;142:261–270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.