4,659
Views
13
CrossRef citations to date
0
Altmetric
Review

Regulation of chromatin structure and function: insights into the histone chaperone FACT

, , &
Pages 465-479 | Received 09 Aug 2020, Accepted 22 Jan 2021, Published online: 16 Feb 2021

References

  • Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18; 389(6648):251–260.
  • Talbert PB, Henikoff S. Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Bio. 2017 Feb l; 18(2):115–126.
  • Clapier CR, Iwasa J, Cairns BR, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Bio. 2017 Jul l; 18(7):407–422.
  • Hammond CM, Stromme CB, Huang H, et al. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Bio. 2017 Mar l; 18(3):141–158.
  • Masliah-Planchon J, Bieche I, Guinebretiere JM, et al. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol. 2015;10(10):145–171.
  • Petty E, Pillus L. Balancing chromatin remodeling and histone modifications in transcription. Trends Genet. 2013 Nov; 29(11):621–629.
  • Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Bio. 2015 Mar l; 16(3):178–189.
  • Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta. 2013 Mar-Apr; 1819(3–4):277–289.
  • Tyagi M, Imam N, Verma K, et al. Chromatin remodelers: we are the drivers!! Nucleus. 2016 Jul 3; 7(4):388–404.
  • Laskey RA, Honda BM, Mills AD, et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5; 275(5679):416–420.
  • Avvakumov N, Nourani A, Cote J. Histone chaperones: modulators of chromatin marks. Mol Cell. 2011 Mar 4; 41(5):502–514.
  • Orphanides G, Wu WH, Lane WS, et al. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 1999 Jul 15; 400(6741):284–288.
  • Reinberg D, Sims RJ. 3rd.de FACTo nucleosome dynamics. J Biol Chem. 2006 Aug 18; 281(33):23297–23301.
  • Liu Y, Zhou K, Zhang N, et al. FACT caught in the act of manipulating the nucleosome. Nature. 2020 Jan;577(7790):426–431.
  • Formosa T, Ruone S, Adams MD, et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics. 2002 Dec;162(4):1557–1571.
  • Hainer SJ, Pruneski JA, Mitchell RD, et al. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 2011;25(1):29–40. 2011 Jan 1. .
  • Gurova K, Chang HW, Valieva ME, et al. Structure and function of the histone chaperone FACT - Resolving FACTual issues. Biochim Biophys Acta Gene Regul Mech. 2018 Jul 25; 1861(9):892–904.
  • Belotserkovskaya R, Oh S, Bondarenko VA, et al. FACT facilitates transcription-dependent nucleosome alteration. Science. 301(5636); 2003 Aug 22. 1090–1093.
  • Orphanides G, LeRoy G, Chang CH, et al. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 92(1); 1998 Jan 9. 105–116.
  • Safina A, Garcia H, Commane M, et al. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells. Cell Cycle. 2013;12(15):2423–2434. 2013 Aug 1. .
  • Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem. 2002;277(51):50206–50213. 2002 Dec 20. .
  • VanDemark AP, Blanksma M, Ferris E, et al. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell. 2006 May 5;22(3): 363–74.
  • Tsunaka Y, Toga J, Yamaguchi H, et al. Phosphorylated intrinsically disordered region of FACT masks its nucleosomal DNA binding elements. J Biol Chem. 2009;284(36):24610–24621. 2009 Sep 4. .
  • Stuwe T, Hothorn M, Lejeune E, et al. The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc Natl Acad Sci U S A. 2008 Jul 1 105(26);8884–8889.
  • Jiang H, Xu S, Chen Y, et al. The structural basis of human Spt16N-terminal domain interaction with histone (H3-H4)2 tetramer. Biochem Biophys Res Commun. 2019 Jan 15 508(3);864–870.
  • Marciano G, Huang DT. Structure of the human histone chaperone FACT Spt16 N-terminal domain. Acta Crystallogr F Struct Biol Commun. 2016 Feb; 72(\(Pt 2)):121–128.
  • Myers CN, Berner GB, Holthoff JH, et al. Mutant versions of the S. cerevisiae transcription elongation factor Spt16 define regions of Spt16 that functionally interact with histone H3. PLoS One. 2011;6(6):e20847. .
  • Hondele M, Stuwe T, Hassler M, et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature. 2013 Jul 4 499(7456);111–114.
  • Tsunaka Y, Fujiwara Y, Oyama T, et al. Integrated molecular mechanism directing nucleosome reorganization by human FACT.. Genes Dev. 2016 Mar 15; 30(6):673–686.
  • Winkler DD, Muthurajan UM, Hieb AR, et al. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events.. J Biol Chem. 2011 Dec 2; 286(48):41883–41892.
  • Kemble DJ, McCullough LL, Whitby FG, et al. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide Motifs. Mol Cell. 2015 Oct 15; 60(2):294–306.
  • Zunder RM, Antczak AJ, Berger JM, et al. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A. 2012 Jan 17; 109(3):E144–53.
  • Zhang W, Zeng F, Liu Y, et al. Crystal structure of human SSRP1 middle domain reveals a role in DNA binding. Sci Rep. 2015 Dec;21(5:):18688.
  • Pfab A, Gronlund JT, Holzinger P, et al. The Arabidopsis histone chaperone FACT: role of the HMG-box domain of SSRP1. J Mol Biol. 2018 Aug 17; 430(17):2747–2759.
  • Ikeda Y, Kinoshita Y, Susaki D, et al. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev Cell. 2011 Sep 13 21(3);589–596.
  • Cao S, Bendall H, Hicks GG, et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Mol Cell Biol. 2003 Aug;23(15):5301–5307. .
  • Chen P, Dong L, Hu M, et al. Functions of FACT in breaking the nucleosome and maintaining its integrity at the single-nucleosome level. Mol Cell. 2018 Jul 19 71(2);284–93 e4.
  • Stros M, Launholt D, Grasser KD. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins.. Cell Mol Life Sci. 2007 Oct 19–20;64:2590–606.
  • Safina A, Cheney P, Pal M, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res. 2017 Feb 28;45(4):–45.
  • Valieva ME, Gerasimova NS, Kudryashova KS, et al. Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy. Cancers (Basel). 2017 Jan 6 9(12);1.
  • Brewster NK, Johnston GC, Singer RA. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol. 2001 May;21(10):3491–3502.
  • Brewster NK, Johnston GC, Singer RA. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression.. J Biol Chem. 1998 Aug 21; 273(34):21972–21979.
  • Ruone S, Rhoades AR, Formosa T. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J Biol Chem. 2003 Nov 14; 278(46):45288–45295.
  • Formosa T, Eriksson P, Wittmeyer J, et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 2001 Jul 2; 20(13):3506–3517.
  • Paull TT, Johnson RC. DNA looping by saccharomyces cerevisiae high mobility group proteins NHP6A/B. consequences for nucleoprotein complex assembly and chromatin condensation. J Biol Chem. 1995 Apr 14; 270(15):8744–8754.
  • Stillman DJ. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. Biochim Biophys Acta. 2010 Jan-Feb;1799(1–2):175–180.
  • Zheng S, Crickard JB, Srikanth A, et al. A highly conserved region within H2B is important for FACT to act on nucleosomes. Mol Cell Biol. 2014 Feb;34(3):303–314.
  • McCullough LL, Connell Z, Xin H, et al. Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization. J Biol Chem. 2018 Apr 20 293(16);6121–6133.
  • Wang T, Liu Y, Edwards G, et al. The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci Alliance. 2018 Aug;1(4):e201800107.
  • Hsieh FK, Kulaeva OI, Patel SS, et al. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A. 2013 May 7 110(19);7654–7659.
  • Gupta K, Sari-Ak D, Haffke M, et al. Zooming in on transcription preinitiation. J Mol Biol. 2016 Jun 19; 428(12):2581–2591.
  • Petrenko N, Jin Y, Dong L, et al. Requirements for RNA polymerase II preinitiation complex formation in vivo. Elife. 2019 Jan;25(8):
  • Biswas D, Yu Y, Prall M, et al. The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol. 2005 Jul; 25(14):5812–5822.
  • Mylonas C, Tessarz P. Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life Sci Alliance. 2018 Jun; 1(3):e201800085.
  • Pathak R, Singh P, Ananthakrishnan S, et al. Acetylation-dependent recruitment of the FACT complex and its role in regulating pol II occupancy genome-wide in Saccharomyces cerevisiae. Genetics. 2018 Jul; 209(3):743–756.
  • True JD, Muldoon JJ, Carver MN, et al. The modifier of transcription 1 (Mot1) atpase and spt16 histone chaperone co-regulate transcription through preinitiation complex assembly and nucleosome organization. J Biol Chem. 2016 Jul 15 291(29);15307–15319.
  • Saunders A, Werner J, Andrulis ED, et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science. 2003 Aug 22;301(5636):1094–1096. .
  • Pavri R, Zhu B, Li G, et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell. 2006 May 19 125(4);703–717.
  • Mason PB, The SK. FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol. 2003 Nov; 23(22):8323–8333.
  • Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites.Science. 2003 Aug 22;301(5636):1096–1099. .
  • van Bakel H, Tsui K, Gebbia M, et al. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet. 2013 May;9(5):e1003479.
  • Schwabish MA, Struhl K. Evidence for eviction and rapid deposition of histories upon transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2004 Dec; 24(23):10111–10117.
  • Izban MG, Luse DS. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991 Apr;5(4):683–696.
  • Luse DS, Studitsky VM. The mechanism of nucleosome traversal by RNA polymerase II: roles for template uncoiling and transcript elongation factors. RNA Biol. 2011 Jul-Aug; 8(4):581–585.
  • Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin. Nature. 2000 Sep 28;407(6803):471–475. .
  • Voth WP, Takahata S, Nishikawa JL, et al. A role for FACT in repopulation of nucleosomes at inducible genes. PLoS One. 2014;9(1):e84092.
  • Xin H, Takahata S, Blanksma M, et al. yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol Cell. 2009 Aug 14; 35(3):365–376.
  • Valieva ME, Armeev GA, Kudryashova KS, et al. Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol. 2016 Dec 23(12);1111–1116.
  • Birch JL, Tan BC, Panov KI, et al. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J. 2009 Apr 8 28(7);854–865.
  • Formosa T. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta. 2012 Mar; 1819(3–4):247–255.
  • Cheung V, Chua G, Batada NN, et al. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol. 2008 Nov 11 6(11);e277.
  • Hainer SJ, Charsar BA, Cohen SB, et al. Identification of mutant versions of the spt16 histone chaperone that are defective for transcription-coupled nucleosome occupancy in saccharomyces cerevisiae. G3-Genes Genomes Genet. 2012 May 1;2(5):555–567.
  • Erkina TY, Erkine A. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Cell Stress Chaperones. 2015 Mar; 20(2):355–369.
  • Feng JX, Gan HY, Eaton ML, et al. Noncoding transcription is a driving force for nucleosome instability in spt16 mutant cells. Mol Cell Biol. 2016 Jul 36(13);1856–1867.
  • Gasparian AV, Burkhart CA, Purmal AA, et al. Curaxins: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci Transl Med. 2011 Aug 10;3(95):95ra. 74.
  • Chang HW, Valieva ME, Safina A, et al. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. Sci Adv. 2018 Nov;4(11):eaav2131. .
  • Nesher E, Safina A, Aljahdali I, et al. Role of chromatin damage and chromatin trapping of FACT in mediating the anticancer cytotoxicity of DNA-binding small-molecule drugs. Cancer Res. 2018 Mar 15 78(6);1431–1443.
  • Martin BJE, Chruscicki AT, Howe LJ. Transcription promotes the interaction of the facilitates chromatin transactions (FACT) complex with nucleosomes in Saccharomyces cerevisiae. Genetics. 2018 Nov;210(3):869–881.
  • Kantidze OL, Luzhin AV, Nizovtseva EV, et al. The anti-cancer drugs curaxins target spatial genome organization. Nat Commun. 2019 Mar 29 10(1);1441.
  • Tettey TT, Gao X, Shao W, et al. A role for FACT in RNA polymerase II promoter-proximal pausing. Cell Rep. 2019 Jun 25 27(13);3770–79 e7.
  • Li Y, Zeng SX, Landais I, et al. SSRP1 has Spt16-dependent and -independent roles in gene transcription.. J Biol Chem. 2007 Mar 9; 282(10):6936–6945.
  • Sims RJ, Millhouse S, Chen CF, et al. Recognition of trimethylated histone h3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 2007 Nov 30;28(4):665–676.
  • Simic R, Lindstrom DL, Tran HG, et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003 Apr 15 22(8);1846–1856.
  • Johnson JM, French SL, Osheim YN, et al. Rpd3-and Spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA Genes. Mol Cell Biol. 2013 Jul 33(14);2748–2759.
  • Mahapatra S, Dewari PS, Bhardwaj A, et al. Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes. Nucleic Acids Res. 2011 May; 39(10):4023–4034.
  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010 Oct 22; 40(2):179–204.
  • Vitor AC, Huertas P, Legube G, et al. Studying DNA double-strand break repair: an ever-growing toolbox. Front Mol Biosci. 2020(7):24.
  • Zhang L, Wang Z, Shi R, et al. RNF126 quenches RNF168 function in the DNA damage response. Genomics Proteomics Bioinformatics. 2018 Dec 16(6);428–438.
  • Yang G, Chen Y, Wu J, et al. Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions. Nucleic Acids Res. 2020 Apr 6 48(6);3001–3013.
  • Krohn NM, Stemmer C, Fojan P, et al. Protein kinase CK2 phosphorylates the high mobility group domain protein SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem. 2003 Apr 11; 278(15):12710–12715.
  • Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011 Mar;21(3):396–420.
  • Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015 Mar 11; 43(5):2489–2498.
  • Morrison AJ, Highland J, Krogan NJ, et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell. 2004 Dec 17 119(6);767–775.
  • Stucki M, Clapperton JA, Mohammad D, et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005 Dec 29; 123(7):1213–1226.
  • Kleiner RE, Verma P, Molloy KR, et al. Chemical proteomics reveals a gammaH2AX-53BP1 interaction in the DNA damage response. Nat Chem Biol. 2015 Oct; 11(10):807–814.
  • Heo K, Kim H, Choi SH, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell. 2008 Apr 11;30(1):86–97.
  • Piquet S, Le Parc F, Bai SK, et al. The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage. Mol Cell. 2018 Dec 6; 72(5):888–901e7.
  • Meas R, Wyrick JJ, Smerdon MJ. Nucleosomes regulate base excision repair in chromatin. Mutat Res. 2019 Apr-Jun; 780::29–36.
  • Wallace SS. Base excision repair: a critical player in many games. DNA Repair (Amst). 2014 Jul; 19:14–26.
  • Moor NA, Lavrik OI. protein-protein interactions in DNA base excision repair. Biochemistry (Mosc). 2018 Apr;;83(4):411–422.
  • Charles Richard JL, Shukla MS, Menoni H, et al. FACT assists base excision repair by boosting the remodeling activity of RSC. PLoS Genet. 2016 Jul 12(7);e1006221.
  • Wienholz F, Zhou D, Turkyilmaz Y, et al. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res. 2019 May 7 47(8);4011–4025.
  • Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018 Jul 6; 293(27):10524–10535.
  • Kumari A, Mazina OM, Shinde U, et al. A role for SSRP1 in recombination-mediated DNA damage response. J Cell Biochem. 2009 Oct 1; 108(2):508–518.
  • Oliveira DV, Kato A, Nakamura K, et al. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci. 2014 Feb 15 127(\(Pt 4));763–772.
  • Nakamura K, Kato A, Kobayashi J, et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell. 2011 Mar 4 41(5);515–528.
  • Moyal L, Lerenthal Y, Gana-Weisz M, et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell. 2011 Mar 4 41(5);529–542.
  • Serra-Cardona A, Zhang Z. Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem Sci. 2018 Feb;43(2):136–148.
  • Schlesinger MB, Formosa T. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics. 2000 Aug;155(4):1593–1606.
  • Okuhara K, Ohta K, Seo H, et al. A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr Biol. 1999 Apr 8 9(7);341–350.
  • Hertel L, De Andrea M, Bellomo G, et al. HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res. 1999 Aug 1; 250(2):313–328.
  • Abe T, Sugimura K, Hosono Y, et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem. 2011 Sep 2 286(35);30504–30512.
  • Wittmeyer J, Formosa T. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol. 1997 Jul;17(7):4178–4190.
  • Wittmeyer J, Joss L, Formosa T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry. 1999 Jul 13; 38(28):8961–8971.
  • Han J, Li Q, McCullough L, et al. Ubiquitylation of FACT by the cullin-E3 ligase Rtt101 connects FACT to DNA replication. Genes Dev. 2010 Jul 15; 24(14):1485–1490.
  • Nune M, Morgan MT, Connell Z, et al. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. Elife. 2019 Jan;25:8.
  • Tan BC, Chien CT, Hirose S, et al. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J. 2006 Sep 6;25(17):3975–3985. .
  • Zhai Y, Li N, Jiang H, et al. Unique roles of the non-identical MCM Subunits in DNA replication licensing. Mol Cell. 2017 Jul 20; 67(2):168–179.
  • Kurat CF, Yeeles JTP, Patel H, et al. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell. 2017 Jan 5; 65(1):117–130.
  • Yang J, Zhang X, Feng J, et al. The Histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep. 2016 Sep 20 16(12);3414.
  • Foltman M, Evrin C, De Piccoli G, et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep. 2013 Mar 28 3(3);892–904.
  • Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life. 2014 Apr; 66(4):240–256.
  • Lai WKM, Pugh BF. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol. 2017 Sep; 18(9):548–562.
  • Fleming AB, Kao CF, Hillyer C, et al. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell. 2008 Jul 11; 31(1):57–66.
  • Murawska M, Schauer T, Matsuda A, et al. The chaperone FACT and histone H2B ubiquitination maintain S. pombe genome Architecture through genic and subtelomeric functions. Mol Cell. 2020 Feb 6 77(3);501–13e7.
  • Hodges AJ, Gloss LM, Wyrick JJ. Residues in the nucleosome acidic patch regulate histone occupancy and are important for FACT binding in Saccharomyces cerevisiae. Genetics. 2017 Jul; 206(3):1339–1348.
  • Carvalho S, Raposo AC, Martins FB, et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 2013 Mar 1 41(5);2881–2893.
  • McCullough LL, Pham TH, Parnell TJ, et al. Establishment and maintenance of chromatin architecture are promoted independently of transcription by the histone chaperone FACT and H3-K56 acetylation in Saccharomyces cerevisiae. Genetics. 2019 Mar 211(3);877–892.
  • Begum NA, Stanlie A, Nakata M, et al. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation.. J Biol Chem. 2012 Sep 21; 287(39):32415–32429.
  • Jeronimo C, Poitras C, Robert F. Histone recycling by FACT and Spt6 during transcription prevents the scrambling of histone modifications. Cell Rep. 2019 Jul 30; 28(5):1206–18e8.
  • Li Y, Keller DM, Scott JD, et al. CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. J Biol Chem. 2005 Mar 25; 280(12):11869–11875.
  • Mayanagi K, Saikusa K, Miyazaki N, et al. Structural visualization of key steps in nucleosome reorganization by human FACT. Sci Rep. 2019 Jul 15 9(1);10183.
  • Luke B, Versini G, Jaquenoud M, et al. The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites. Curr Biol. 2006 Apr 18 16(8);786–792.
  • de Vivo A, Sanchez A, Yegres J, et al. OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res. 2019 Jan 25; 47(2):729–746.
  • Sanchez A, De Vivo A, Uprety N, et al. BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11243–11248.
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development..Science. 2001 Aug 10;293(5532):1089–1093. .
  • Wang JH, Li Y, Deng SL, et al. Recent research advances in mitosis during mammalian gametogenesis. Cells. 2019 Jun 10; 8(6):567.
  • Voss TC, Hager GL. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet. 2014 Feb;15(2):69–81.
  • Nashun B, Hill PW, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J. 2015 May 12; 34(10):1296–1308.
  • Shen Z, Formosa T, Tantin D. FACT inhibition blocks induction but not maintenance of pluripotency.. Stem Cells Dev. 2018 Dec 15; 27(24):1693–1701.
  • Koche RP, Smith ZD, Adli M, et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell. 2011 Jan 7 8(1);96–105.
  • Ding J, Xu H, Faiola F, et al. Oct4 links multiple epigenetic pathways to the pluripotency network. Cell Res. 2012 Jan; 22(1):155–167.
  • Pardo M, Lang B, Yu L, et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell. 2010 Apr 2;6(4):382–395.
  • Strebinger D, Deluz C, Friman ET, et al. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Mol Syst Biol. 2019 Sep; 15(9):e9002.
  • Garcia H, Fleyshman D, Kolesnikova K, et al. Expression of FACT in mammalian tissues suggests its role in maintaining of undifferentiated state of cells. Oncotarget. 2011 Oct;2(10):783–796. .
  • Shakya A, Callister C, Goren A, et al. Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol. 2015 Mar 35(6);1014–1025.
  • Hossan T, Nagarajan S, Baumgart SJ, et al. Histone chaperone SSRP1 is essential for Wnt signaling pathway activity during osteoblast differentiation. Stem Cells. 2016 May 34(5);1369–1376.
  • Suggs BZ, Latham AL, Dawes AT, et al. FACT complex gene duplicates exhibit redundant and non-redundant functions in C. elegans. Dev Biol. 2018 Dec 15; 444(2):71–82.
  • Ferri F, Petit V, Barroca V, et al. Interplay between FACT subunit SPT16 and TRIM33 can remodel chromatin at macrophage distal regulatory elements. Epigenetics Chromatin. 2019 Jul 22; 12(1):46.
  • Koltowska K, Apitz H, Stamataki D, et al. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis. Development. 2013 May;140(9):1912–1918. .
  • Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell. 2008 Jul 11; 134(1):162–174.
  • Garcia H, Miecznikowski JC, Safina A, et al. Facilitates chromatin transcription complex is an “accelerator” of tumor transformation and potential marker and target of aggressive cancers. Cell Rep. 2013 Jul 11 4(1);159–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.