669
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

LncRNA lnc_13814 promotes the cells apoptosis in granulosa cells of duck by acting as apla-miR-145-4 sponge

, , , , , , , , & ORCID Icon show all
Pages 927-942 | Received 08 Jun 2020, Accepted 17 Mar 2021, Published online: 12 Apr 2021

References

  • Shen M, Li T, Zhang G, et al. Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken. BMC Genomics. 2019;20:96.
  • Johnson AL, Solovieva EV, Bridgham JT. Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development. Biol Reprod. 2002;67(4):1313–1320.
  • Hocking PM. Biology of Breeding Poultry potx. Wallingford, UK: CAB International; 2009.
  • Gilbert AB, Perry MM, Waddington D, et al. Role of atresia in establishing the follicular hierarchy in the ovary of the domestic hen (gallus domesticus). Reproduction. 1983;69(1):221–227.
  • Johnson AL, Woods DC. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. Gen Comp Endocrinol. 2009;163(1–2):12–17.
  • Johnson AL. Ovarian follicle selection and granulosa cell differentiation. Poult Sci. 2015;94(4):781–785.
  • Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. Febs J. 2016;283(14):2640–2652.
  • Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF‐kappaB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26(12):2190–2204.
  • Fu HY, Okada K, Liao Y, et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum‐mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation. 2010;122(4):361–369.
  • Puthalakath H, O’Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3‐only protein Bim. Cell. 2007;129(7):1337–1349.
  • Orom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010;143(1):46–58.
  • Melo CA, Drost J, Wijchers PJ, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cells. 2013;49(3):524–535.
  • Hua Q, Jin M, Mi B, et al. LINC01123, a c-Myc activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol. 2019;12(1):91.
  • Li P, He J, Yang Z, et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 2019;16(7):1186–1199.
  • Sun Q, Li J, Li F, et al. LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway. Cell Proliferat. 2019;52(6). DOI:10.1111/cpr.12687.
  • Huang Y, Xu Y, Lu Y, et al. lncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived betalike cell differentiation by targeting miR-338-3p as a ceRNA. Biomaterials 2019;216:119266.
  • De Lima DS, Cardozo LE, Maracaja-Coutinho V, et al. Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination. P Nat Acad Sci USA. 2019;116(34):17121–17126.
  • Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012;13(11):971–983.
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.
  • Nakagawa S, Kageyama Y. Nuclear lncRNAs as epigenetic regulators-Beyond skepticism. BBA- Gene Regul Mech. 2014;1839:215–222.
  • Kornienko AE, Guenzl PM, Barlow DP, et al. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11(1):59.
  • Donato L, Scimone C, Alibrandi S, et al. Transcriptome analyses of lncRNAs in A2E-stressed retinal epithelial cells unveil advanced links between metabolic impairments related to oxidative stress and retinitis pigmentosa. Antioxidants (Basel). 2020;9(4):318.
  • Donato L, Bramanti P, Scimone C, et al. miRNAexpression profile of retinal pigment epithelial cells under oxidative stress conditions. FEBS Open Bio. 2018;8(2):219–233.
  • Liu Y, Li M, Bo X, et al. Systematic analysis of long non-coding RNAs and mRNAs in the ovaries of duroc pigs during different follicular stages using RNA sequencing. Int J Mol Sci. 2018;19(6):1722.
  • Zhang FL, Li N, Wang H, et al. Zearalenone exposure induces the apoptosis of porcine granulosa cells and changes long noncoding RNA expression to promote antiapoptosis by activating the JAK2–STAT3 pathway. J Agric Food Chem. 2019;67(43):12117–12128.
  • Han DX, Sun XL, Wang CJ, et al. Differentially expressed lncRNA-m433s1 regulates FSH secretion by functioning as a miRNA sponge in male rat anterior pituitary cells. Biol Reprod. 2019;101(2):416–425.
  • Li Y, Wang H, Zhou D, et al. Up-regulation of long noncoding RNA SRA promotes cell growth, inhibits cell apoptosis, and induces secretion of estradiol and progesterone in ovarian granular cells of mice. Med Sci Monit. 2018;24:2384–2390.
  • Hu K, He C, Ren H, et al. LncRNA Gm2044 promotes 17β-estradiol synthesis in mpGCs by acting as miR-138-5p sponge. Mol Reprod Dev. 2019;86(8):1023–1032.
  • Li Y, Liu YD, Chen SL, et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod. 2019;25(1):17–29.
  • Peng Y, Chang L, Wang Y, et al. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds. Genomics 2019;111(6):1395–1403.
  • Kang YJ, Yang DC, Kong L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–W16.
  • Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166-e166.
  • Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–230.
  • Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15(1):311.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 2014;15(12):550.
  • Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25(8):1091–1093.
  • Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013;29:661–663.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005.
  • Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(D1):146–152.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− Δ Δ CT method. Methods 2001;25:402–408.
  • Besbes S, Mirshahi M, Pocard M, et al. New dimension in therapeutic targeting of bcl-2 family proteins. Oncotarget. 2015;6(15):12862–12871.
  • Bundscherer A, Malsy M, Bitzinger D, et al. Interaction of anesthetics and analgesics with tumor cells. Anaesthesist. 2014;63(4):313–325.
  • Liu F, Bardhan K, Yang D, et al. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem. 2012;287(30):25530–25540.
  • Etches RJ, Petitte JN, Etches RJ, et al. Reptilian and avian follicular hierarchies: models for the study of ovarian development. J Exp Zool. 1990;256(Suppl 4):112–122.
  • Cogburn LA, Porter TE, Duclos MJ. et al. Functional genomics of the chicken—a model organism. Poul Sci. 2007;86(10):2059–2094.
  • Zou X, Wang J, Qu H, et al. Comprehensive analysis of miRNAs, lncRNAs, and mRNAs reveals potential players of sexually dimorphic and left-right asymmetry in chicken gonad during gonadal differentiation. Poul Sci. 2020;99(5):2696–7207.
  • Wang S, Wang W, Li X, et al. Cooperative application of transcriptomics and ceRNA hypothesis: lncRNA-107052630/miR-205a/G0S2 crosstalk is involved in ammonia-induced intestinal apoptotic injury in chicken. J Hazard Mater. 2020;396:122605.
  • Guo Y, Tang H, Li Z, et al. High-throughput transcriptome analysis reveals potentially important relationships between lncRNAs and genes in broilers affected by valgus-varus deformity (gallus gallus). Gene 2020;743:144511.
  • Ren J, Du X, Zeng T, et al. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction. Anim Reprod Sci. 2017;185:8–17.
  • Adetula AA, Gu L, Nwafor CC, et al. Transcriptome sequencing reveals key potential long non-coding RNAs related to duration of fertility trait in the uterovaginal junction of egg-laying hens. Sci Rep. 2018;8(1):13185.
  • Bliss SP, Navratil AM, Xie J, et al. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol. 2010;31(3):322–340.
  • Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci. 2005;88(1–2):5–28.
  • La Y, He X, Zhang L, et al. Comprehensive analysis of differentially expressed profiles of mrna, lncrna, and circrna in the uterus of seasonal reproduction sheep. Genes (Basel). 2020;11(3):301.
  • Peng Y, Chang L, Wang Y, et al. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds. Genomics 2018. DOI:10.1016/j.ygeno.2018.09.012.
  • Cesana M, Cacchiarelli D, Legnini I, et al. Long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–369.
  • Poliseno L, Salmena L, Zhang J, et al. Coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–1038.
  • Wang Y, Kong DL. Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J Cell Biochem. 2018;119(1):669–679.
  • Cao R, Wu W, Zhou X, et al. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary. Int J Biochem Cell Biol. 2015;68:148–157.
  • Liu J, Yao W, Yao Y, et al. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588(23):4497–4503.
  • Yao W, Pan Z, Du X, et al. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter. J Cell Physiol. 2018;233(6):6807–6821.
  • Kang L, Yang C, Wu H, et al. Mir-26a-5p regulates tnrc6a expression and facilitates theca cell proliferation in chicken ovarian follicles. Dna Cell Biol. 2017;36(11):922.
  • Wang Y, Ma J, Qiu W, et al. Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K signaling pathway. Int J Mol Sci. 2018;19(9):2837.
  • Iurlaro R, Muoz‐Pinedo C. Cell death induced by endoplasmic reticulum stress. Febs J. 2016;283(14):2640–2652.
  • Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF‐kappaB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2016;26(12):2190–2204.
  • Puthalakath H, O’Reilly LA, Gunn P, et al. ER stress triggers apoptosis by activating BH3‐only protein Bim. Cell. 2007;129(7):1337–1349.
  • Scimone C, Donato L, Esposito T, et al. A novel RLBP1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens. Hum Genomics. 2017;11(1):18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.