583
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

A two-subpopulation model that reflects heterogeneity of large dense core vesicles in exocytosis

, & ORCID Icon
Pages 531-546 | Received 16 Jun 2021, Accepted 04 Jan 2022, Published online: 22 Jan 2022

References

  • Burgoyne RD, Morgan A. Secretory granule exocytosis. Physiol Rev. 2003;83(2):581–632.
  • Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature. 2012;490(7419):201–207.
  • Geppert M, Goda Y, Hammer RE, et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994;79(4):717–727.
  • Chapman ER. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol. 2002;3(7):498–508.
  • Sollner T, Bennett MK, Whiteheart SW, et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993;75(3):409–418.
  • Sollner TH. Regulated exocytosis and SNARE function (review). Mol Membr Biol. 2003;20(3):209–220.
  • Suedhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675–690.
  • Augustin I, Rosenmund C, Sudhof TC, et al. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature. 1999;400(6743):457–461.
  • Ma C, Li W, Xu Y, et al. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat Struct Mol Biol. 2011;18(5):542–U206.
  • Rosenmund C, Stevens CF. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996;16(6):1197–1207.
  • Horrigan FT, Bookman RJ. Releasble pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron. 1994;13(5):1119–1129.
  • Schneggenburger R, Sakaba T, Neher E., et al. Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci. 2002;25(4):206–212.
  • Jung JH, Szule JA, Marshall RM, et al. Variable priming of a docked synaptic vesicle. Proc Natl Acad Sci U S A. 2016;113(8):E1098–E1107.
  • Neher E, Brose N. Dynamically primed synaptic vesicle states: key to understand synaptic short-term plasticity. Neuron. 2018;100(6):1283–1291.
  • Lee JS, Ho W-K, Neher E, et al. Superpriming of synaptic vesicles after their recruitment to the readily releasable pool. Proc Natl Acad Sci U S A. 2013;110(37):15079–15084.
  • Taschenberger H, Woehler A, Neher E., et al. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A. 2016;113(31):E4548–E4557.
  • Ortega JM, Genc O, Davis GW., et al. Molecular mechanisms that stabilize short term synaptic plasticity during presynaptic homeostatic plasticity. Elife. 2018;7:e40385.
  • Xue R, Ruhl DA, Briguglio JS, et al. Doc2-mediated superpriming supports synaptic augmentation. Proc Natl Acad Sci U S A. 2018;115(24):E5605–E5613.
  • Betz A, Ashery U, Rickmann M, et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998;21(1):123–136.
  • Rhee JS, Betz A, Pyott S, et al. beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell. 2002;108(1):121–133.
  • Gillis KD, Mossner R, Neher E., et al. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron. 1996;16(6):1209–1220.
  • Stevens CF, Sullivan JM. Regulation of the readily releasable vesicle pool by protein kinase C. Neuron. 1998;21(4):885–893.
  • Palfreyman MT, Jorgensen EM. Unc13 aligns SNAREs and superprimes synaptic vesicles. Neuron. 2017;95(3):473–475.
  • Reddy-Alla S, Boehme MA, Reynolds E, et al. Stable positioning of Unc13 restricts synaptic vesicle fusion to defined release sites to promote synchronous neurotransmission. Neuron. 2017;95(6):1350-+.
  • Ishiyama S, Schmidt H, Cooper BH, et al. Munc13-3 superprimes synaptic vesicles at granule cell-to-basket cell synapses in the mouse cerebellum. J Neurosci. 2014;34(44):14687–14696.
  • Rao TC, Rodriguez ZS, Bradberry MM, et al. Synaptotagmin isoforms confer distinct activation kinetics and dynamics to chromaffin cell granules. J Gen Physiol. 2017;149(8):763–780.
  • Wightman RM, Jankowski JA, Kennedy RT, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A. 1991;88(23):10754–10758.
  • Jackson MB, Hsiao Y-T, Chang C-W., et al. Fusion pore expansion and contraction during catecholamine release from endocrine cells. Biophys J. 2020;119(1):219–231.
  • Westerink RHS, Ewing AG. The PC12 cell as model for neurosecretion. Acta Physiol. 2008;192(2):273–285.
  • Westerink RHS, de Groot A, Vijverberg HPM., et al. Heterogeneity of catecholamine-containing vesicles in PC12 cells. Biochem Biophys Res Commun. 2000;270(2):625–630.
  • van Kempen Gth, vanderLeest HT, van Den Berg Rj, et al. Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys J. 2011;100(4):968–977.
  • Graham ME, O’Callaghan DW, McMahon HT, et al. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci U S A. 2002;99(10):7124–7129.
  • Tischler AS, Perlman RL, Morse GM, et al. Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell-cultures. J Neurochem. 1983;40(2):364–370.
  • Xue R, Zhao Y, Su L, et al. PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. Pflugers Arch. 2009;458(6):1137–1149.
  • Machado DJ, Montesinos MS, Borges R., et al. Good practices in single-cell amperometry. In: Ivanov, AI. Exocytosis and Endocytosis. Vol 440. Methods in molecular biology . Clifton (NJ): Humana Press; 2008. p. 297–313.
  • Cahill PS, Walker QD, Finnegan JM, et al. Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem. 1996;68(18):3180–3186.
  • Wang CT, Grishanin R, Earles CA, et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science. 2001;294(5544):1111–1115.
  • Mosharov EV, Sulzer D. Analysis of exocytotic events recorded by amperometry. Nat Methods. 2005;2(9):651–658.
  • Graham ME, Fisher RJ, Burgoyne RD., et al. Measurement of exocytosis by amperometry in adrenal chromaffin cells: effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie. 2000;82(5):469–479.
  • Xue R, Zhao Y, Chen P., et al. Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. Biochem Biophys Res Commun. 2009;380(2):371–376.
  • Zhang E, Xue R, Soo J, et al. Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. Pflugers Arch. 2008;457(1):211–222.
  • Clark RA, Ewing AG. Quantitative measurements of released amines from individual exocytosis events. Mol Neurobiol. 1997;15(1):1–16.
  • Zhang J, Xue R, Ong W-Y, et al. Roles of cholesterol in vesicle fusion and motion. Biophys J. 2009;97(5):1371–1380.
  • Toullec D, Pianetti P, Coste H, et al. The bisindolylmaleimide GF-109203X is a potent and selective inhibitor of Protein-Kinase-C. J Biol Chem. 1991;266(24):15771–15781.
  • Li P, Bademosi AT, Luo J, et al. Actin remodeling in regulated exocytosis: toward a mesoscopic view. Trends Cell Biol. 2018;28(9):685–697.
  • Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–529.
  • Doussau F, Gasman S, Humeau Y, et al. A rho-related GTPase is involved in Ca2+-dependent neurotransmitter exocytosis. J Biol Chem. 2000;275(11):7764–7770.
  • Gasman S, Chasserot-Golaz S, Popoff MR, et al. Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells. J Cell Sci. 1999;112(24):4763–4771.
  • Liscovitch M, Cantley LC. LIPID 2ND MESSENGERS. Cell. 1994;77(3):329–334.
  • Caumont AS, Galas MC, Vitale N, et al. Regulated exocytosis in chromaffin cells - translocation of ARF6 stlmulates a plasma membrane-associated phospholipase D. J Biol Chem. 1998;273(3):1373–1379.
  • Choi WS, Kim YM, Combs C, et al. Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J Immunol. 2002;168(11):5682–5689.
  • Heinemann C, Chow RH, Neher E, et al. KINETICS OF THE SECRETORY RESPONSE IN BOVINE CHROMAFFIN CELLS FOLLOWING FLASH-PHOTOLYSIS OF CAGED CA2+. Biophys J. 1994;67(6):2546–2557.
  • Xu T, Binz T, Niemann H, et al. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci. 1998;1(3):192–200.
  • Rizzoli SO, Betz WJ. Synaptic vesicle pools. Nat Rev Neurosci. 2005;6(1):57–69.
  • An S, Zenisek D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr Opin Neurobiol. 2004;14(5):522–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.