595
Views
0
CrossRef citations to date
0
Altmetric
Review

A mechanistically approached review upon assorted cell lines stimulated by athermal electromagnetic irradiation

&
Pages 1319-1342 | Received 09 Aug 2022, Accepted 21 Nov 2022, Published online: 05 May 2023

References

  • Kocaman A, Altun G, Kaplan AA, et al. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 2018;163:71–79.
  • Heidari S, Abdi S, Karizi SZ. Evaluation of BCL2 and its regulatory miRs, miR-15-b and miR-16 expression changes under the exposure of extremely low-frequency electromagnetic fields on human gastric cancer cell line. Radiat Prot Dosimetry. 2021;197(2):93–100.
  • Xu W, Yan D, Sun J, et al. The activation of cancer cells by a nanosecond-pulsed magnetic field generator. J Phys D Appl Phys. 2020;53(12):125401.
  • SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). Potential health effects of Exposure to Electromagnetic Fields (EMF); 27 January 2015.
  • Akbarnejad Z, Eskandary H, Vergallo C, et al. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87. Electromagn Biol Med. 2017;36(3):238–247.
  • Ashdown CP, Johns SC, Aminov E, et al. Pulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viability. Biophys J. 2020;118(7):1552–1563.
  • Buckner CA, Buckner AL, Koren SA, et al. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Bioelectromagnetics. 2018;39(3):217–230.
  • Destefanis M, Viano M, Leo C, et al. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int J Radiat Biol. 2015;91(12):964–972.
  • Liu Y, Liu W, Liu K, et al. Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields. Cell Cycle. 2016;15(3):357–367.
  • Oh IR, Raymundo B, Jung SA, et al. Extremely low-frequency electromagnetic field altered PPARγ and CCL2 levels and suppressed CD44+/CD24- breast cancer cells characteristics. Bull Korean Chem Soc. 2020;41(8):812–823.
  • Storch K, Dickreuter E, Artati A, et al. Bemer electromagnetic field therapy reduces cancer cell radioresistance by enhanced ros formation and induced DNA damage. PLoS ONE. 2016;11(12):e0167931.
  • Vincenzi F, Ravani A, Pasquini S, et al. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. J Cell Physiol. 2017;232(5):1200–1208.
  • Berkelmann L, Bader A, Meshksar S, et al. Tumour-treating fields (TTFields): investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Sci Rep. 2019;9(1):1–11.
  • Garg AA, Jones TH, Moss SM, et al. Electromagnetic fields alter the motility of metastatic breast cancer cells. Commun Biol. 2019;2(1):1–16.
  • Jimenez H, Wang M, Zimmerman JW, et al. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBioMedicine. 2019;44:209–224.
  • Neuhaus E, Zirjacks L, Ganser K, et al. Alternating electric fields (TTFields) activate Cav1.2 channels in human glioblastoma cells. Cancers (Basel). 2019;11(1):110.
  • Peng WY, Li KJ, Xie YZ, et al. Development of a TEM-cell-integrated CO2 incubator for cell-based transient electromagnetic field bioeffect study. Electromagn Biol Med. 2020;39(4):290–297.
  • Choi J, Min K, Jeon S, et al. Continuous exposure to 1.7 GHz LTE electromagnetic fields increases intracellular reactive oxygen species to decrease human cell proliferation and induce senescence. Sci Rep. 2020;10(1):1–15.
  • Jooyan N, Goliaei B, Bigdeli B, et al. Direct and indirect effects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: evidence of bystander effect by non-ionizing radiation. Environ Res. 2019;174:176–187.
  • Mumtaz S, Bhartiya P, Kaushik N, et al. Pulsed high-power microwaves do not impair the functions of skin normal and cancer cells in vitro: a short-term biological evaluation. J Adv Res. 2020;22:47–55.
  • Sueiro-Benavides RA, Leiro-Vidal JM, Salas-Sánchez AÁ, et al. Radiofrequency at 2.45 ghzGhz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. Sci Total Environ. 2021;765:142681.
  • Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990–2015. Environ Res. 2020;184:109227.
  • Aalami Zavareh F, Abdi S, Entezari M. Up-regulation of miR-144 and miR-375 in the human gastric cancer cell line following the exposure to extremely low-frequency electromagnetic fields. Int J Radiat Biol. 2021;97(9):1324–1332.
  • Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–3295.
  • Davies AM, Weinberg U, Palti Y. Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci. 2013;1291(1):86–95.
  • Kahya MC, Nazroğlu M, Çiğ B. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Element Res. 2014;160(2):285–293.
  • Liu X, Liu Z, Liu Z, et al. The effects of bio-inspired electromagnetic fields on normal and cancer cells. J Bionic Eng. 2019;16(5):943–953.
  • Cios A, Ciepielak M, Stankiewicz W, et al. The influence of the extremely low frequency electromagnetic field on clear cell renal carcinoma. Int J Mol Sci. 2021;22(3):1342.
  • Geltmeier A, Rinner B, Bade D, et al. Characterization of dynamic behaviour of MCF7 and MCF10A cells in ultrasonic field using modal and harmonic analyses. PLoS ONE. 2015;10(8):e0134999.
  • Filipovic N, Djukic T, Radovic M, et al. Electromagnetic field investigation on different cancer cell lines. Cancer Cell Int. 2014;14(1):1–10.
  • Hussein M, Awwad F, Jithin D, et al. Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci Rep. 2019;9(1):1–8.
  • Taylor JT, Huang L, Pottle JE, et al. Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 2008;267(1):116–124.
  • Al-Serori H, Ferk F, Kundi M, et al. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells. PLoS ONE. 2018;13(4):e0193677.
  • Tang JY, Yeh TW, Huang YT, et al. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagn Biol Med. 2019;38(2):149–157.
  • Delle Monache S, Angelucci A, Sanità P, et al. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs. PLoS ONE. 2013;8(11):e79309.
  • Górski R, Nowak-Terpiłowska A, Śledziński P, et al. Morphological and cytophysiological changes in selected lines of normal and cancer human cells under the influence of a radio-frequency electromagnetic field. Ann Agric Environ Med. 2021;28(1):163.
  • Perera PGT, Nguyen THP, Dekiwadia C, et al. Exposure to high-frequency electromagnetic field triggers rapid uptake of large nanosphere clusters by pheochromocytoma cells. Int J Nanomed. 2018;13:8429.
  • Alcantara DZ, Soliman IJS, Pobre RF, et al. Effects of pulsed electromagnetic fields on breast cancer cell line MCF 7 using absorption spectroscopy. Anticancer Res. 2017;37(7):3453–3459.
  • Zimmerman JW, Pennison MJ, Brezovich I, et al. Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer. 2012;106(2):307–313.
  • Bawin S, Kaczmarek L, Adey WR. Effects of modulated VHF fields on the central nervous system. Ann N Y Acad Sci. 1975;247(1):74–81.
  • Diem E, Schwarz C, Adlkofer F, et al. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2005;583(2):178–183.
  • Makinistian L, Marková E, Belyaev I. A high throughput screening system of coils for elf magnetic fields experiments: proof of concept on the proliferation of cancer cell lines. BMC Cancer. 2019;19(1):1–10.
  • Koziorowska A, Romerowicz-Misielak M, Sołek P, et al. Extremely low frequency variable electromagnetic fields affect cancer and noncancerous cells in vitro differently: preliminary study. Electromagn Biol Med. 2018;37(1):35–42.
  • Zhou J, Wang JQ, Ge BF, et al. Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics. 2014;35(1):30–38.
  • Gutin PH, Wong ET. Noninvasive application of alternating electric fields in glioblastoma: a fourth cancer treatment modality. Am Soc Clin Oncol Educ Book. 2012;32(1):126–131.
  • Restrepo AF, Tobar VE, Camargo RJ, et al., . Effects of extremely low frequency electromagnetic fields on in-vitro cellular cultures HeLa and CHO. in ‘2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’; 2016; Orlando, FL, USA. IEEE, p. 4193–4196.
  • Naarala J, Kesari KK, McClure I, et al. Direction-dependent effects of combined static and ELF magnetic fields on cell proliferation and superoxide radical production. Bio Med Res Int. 2017;2017:1–8.
  • Han Q, Chen R, Wang F, et al. Pre-exposure to 50 hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLoS ONE. 2018;13(4):e0192888.
  • Sanie-Jahromi F, Saadat M. Effects of electromagnetic field, cisplatin and morphine on cytotoxicity and expression levels of DNA repair genes. Mol Biol Rep. 2018;45(5):807–814.
  • Falone S, Marchesi N, Osera C, et al. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE (2) human neuroblastoma cells. Int J Radiat Biol. 2016;92(5):281–286.
  • Ahmadi-Zeidabadi M, Akbarnejad Z, Esmaeeli M, et al. Impact of extremely low-frequency electromagnetic field (100 Hz, 100 G) exposure on human glioblastoma U87 cells during temozolomide administration. Electromagn Biol Med. 2019;38(3):198–209.
  • Baharara J, Hosseini N, Farzin TR. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology. 2016;68(4):1403–1413.
  • Kaszuba-Zwoińska J, Novak P, Nowak B, et al. Low-frequency electromagnetic field influences human oral mucosa keratinocyte viability in response to lipopolysaccharide or minocycline treatment in cell culture conditions. Biomed Pharmacother. 2021;137:111340.
  • Wong E, 2012. ‘Introduction to neoplasia’, http://www.pathophys.org/introneoplasia/.
  • Marinelli F, La Sala D, Cicciotti G, et al. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. J Cell Physiol. 2004;198(2):324–332.
  • Cerbone A, Toaldo C, Laurora S, et al. 4-Hydroxynonenal and PPARγ ligands affect proliferation, differentiation, and apoptosis in colon cancer cells. Free Radic Biol Med. 2007;42(11):1661–1670.
  • Pasi F, Fassina L, Mognaschi ME, et al. Pulsed electromagnetic field with temozolomide can elicit an epigenetic pro-apoptotic effect on glioblastoma T98G cells. Anticancer Res. 2016;36(11):5821–5826.
  • Yang LL, Zhou Y, Tian WD, et al. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology. 2016;52:144–149.
  • Thornton TM, Rincon M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci. 2009;5(1):44.
  • Martínez MA, Úbeda A, Moreno J, et al. Power frequency magnetic fields affect the p38 mapk-mediated regulation of NB69 cell proliferation implication of free radicals. Int J Mol Sci. 2016;17(4):510.
  • Barati M, Fahimi H, Farahmand L, et al. 1hz 100mT electromagnetic field induces apoptosis in breast cancer cells through up-regulation of p38 and p21. Multidiscip Cancer Investig. 2020;4(1):23–29.
  • Antico Arciuch VG, Elguero ME, Poderoso JJ, et al. Mitochondrial regulation of cell cycle and proliferation. Antioxidants & Redox Signaling. 2012;16(10):1150–1180.
  • Chandel NS. Mitochondria as signaling organelles. BMC Biol. 2014;12(1):1–7.
  • Lucia U, Grisolia G, Ponzetto A, et al. Thermomagnetic resonance affects cancer growth and motility. R Soc Open Sci. 2020;7(7):200299.
  • Bergandi L, Lucia U, Grisolia G, et al. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochim Biophys Acta-Mol Cell Res. 2019;1866(9):1389–1397.
  • Ichas F, Mazat JP. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. switching from low-to high-conductance state. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1998;1366(1–2):33–50.
  • Zuo H, Lin T, Wang D, et al. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int J Med Sci. 2014;11(5):426.
  • Yu Y, Yao K, Wu W, et al. Effects of exposure to 1.8 GHz radiofrequency field on the expression of Hsps and phosphorylation of MAPKs in human lens epithelial cells. Cell Res. 2008;18(12):1233–1235.
  • Caraglia M, Marra M, Mancinelli F, et al. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol. 2005;204(2):539–548.
  • Buckner CA, Buckner AL, Koren SA, et al. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS ONE. 2015;10(4):e0124136.
  • Morabito C, Guarnieri S, Fanò G, et al. Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem. 2010;26(6):947–958.