289
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Oscillations in PP1 activity are essential for accurate progression through mammalian oocyte meiosis

ORCID Icon, & ORCID Icon
Pages 1614-1636 | Received 25 Aug 2022, Accepted 12 Jun 2023, Published online: 20 Jun 2023

References

  • Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–291. doi: 10.1038/35066065
  • Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. doi: 10.1038/nrg3245
  • Crncec A, Hochegger H. Triggering mitosis. FEBS Lett. 2019;593(20):2868–2888. doi: 10.1002/1873-3468.13635
  • Adhikari D, Zheng W, Shen Y, et al. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum Mol Genet. 2012;21(11):2476–2484. doi: 10.1093/hmg/dds061
  • St-Denis N, Gupta GD, Lin ZY, et al. Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep. 2016;17(9):2488–2501. doi: 10.1016/j.celrep.2016.10.078
  • Bancroft J, Holder J, Geraghty Z, et al. PP1 promotes cyclin B destruction and the metaphase–anaphase transition by dephosphorylating CDC20. Mol Biol Cell. 2020;31(21):2315–2330. doi: 10.1091/mbc.E20-04-0252
  • Rogers S, Fey D, McCloy RA, et al. PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells. J Cell Sci. 2016;129:1340. doi: 10.1242/jcs.179754
  • Ma S, Vigneron S, Robert P, et al. Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1. J Cell Sci. 2016;129:1329. doi: 10.1242/jcs.178855
  • Grallert A, Boke E, Hagting A, et al. A PP1–PP2A phosphatase relay controls mitotic progression. Nature. 2015;517(7532):94–98. doi: 10.1038/nature14019
  • Tang A, Shi P, Song A, et al. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte. Cell Cycle. 2016;15(11):1450–1461. doi: 10.1080/15384101.2016.1175256
  • Hu M-W, Wang Z-B, Jiang Z-Z, et al. Scaffold subunit Aalpha of PP2A is essential for female meiosis and fertility in mice. Biol Reprod. 2014;91(1):19. doi: 10.1095/biolreprod.114.120220
  • Alexandre H, Van Cauwenberge A, Tsukitani Y, et al. Pleiotropic effect of okadaic acid on maturing mouse oocytes. Development. 1991;112(4):971–980. doi: 10.1242/dev.112.4.971
  • Schwartz DA, Schultz RM. Stimulatory effect of okadaic acid, an inhibitor of protein phosphatases, on nuclear envelope breakdown and protein phosphorylation in mouse oocytes and one-cell embryos. Dev Biology. 1991;145(1):119–127. doi: 10.1016/0012-1606(91)90218-R
  • Mailhes JB, Hilliard C, Fuseler JW, et al. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro. Chromosome Res. 2003;11(6):619–631. doi: 10.1023/A:1024909119593
  • Gavin A-C, Tsukitani Y, Schorderet-Slatkine S. Induction of M-phase entry of prophase-blocked mouse oocytes through microinjection of okadaic acid, a specific phosphatase inhibitor. Exp Cell Res. 1991;192(1):75–81. doi:10.1016/0014-4827(91)90159-R
  • Smith GD, Sadhu A, Mathies S, et al. Characterization of protein phosphatases in mouse oocytes. Dev Biology. 1998;204(2):537–549. doi: 10.1006/dbio.1998.9043
  • Swain JE, Wang X, Saunders TL, et al. Specific inhibition of mouse oocyte nuclear protein phosphatase-1 stimulates germinal vesicle breakdown. Mol Reprod Dev. 2003;65(1):96–103. doi: 10.1002/mrd.10258
  • Swain JE, Ding J, Brautigan DL, et al. Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity. Biol Reprod. 2007;76(4):628–638. doi: 10.1095/biolreprod.106.055798
  • Wang X, Swain JE, Bollen M, et al. Endogenous regulators of protein phosphatase-1 during mouse oocyte development and meiosis. Reproduction. 2004;128(5):493–502. doi: 10.1530/rep.1.00173
  • Wang L-I, Das A, McKim KS, et al. Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments. PLoS Genet. 2019;15(5):e1008072. doi: 10.1371/journal.pgen.1008072
  • Hattersley N, Cheerambathur D, Moyle M, et al. A nucleoporin docks protein phosphatase 1 to direct meiotic chromosome segregation and nuclear assembly. Dev Cell. 2016;38(5):463–477. doi: 10.1016/j.devcel.2016.08.006
  • Oppedisano L, Haines G, Hrabchak C, et al. The rate of aneuploidy is altered in spermatids from infertile mice. Hum Reprod. 2002;17(3):710–717. doi: 10.1093/humrep/17.3.710
  • Swartz SZ, Nguyen HT, McEwan BC, et al. Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. Elife. 2021;10:e70588. doi: 10.7554/eLife.70588
  • Bollen M, Peti W, Ragusa MJ, et al. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci. 2010;35(8):450–458. doi: 10.1016/j.tibs.2010.03.002
  • Heroes E, Lesage B, Görnemann J, et al. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013;280(2):584–595. doi: 10.1111/j.1742-4658.2012.08547.x
  • Winkler C, De Munter S, Van Dessel N, et al. The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J Cell Sci. 2015;128:4526. doi: 10.1242/jcs.175588
  • Bhowmick R, Thakur RS, Venegas AB, et al. The RIF1-PP1 axis controls abscission timing in human cells. Curr Biol. 2019;29(7):1232–42.e5. doi: 10.1016/j.cub.2019.02.037
  • Cheng A, Dean NM, Honkanen RE. Serine/Threonine protein phosphatase type 1γ1 is required for the completion of cytokinesis in human A549 lung carcinoma cells. J Biol Chem. 2000;275(3):1846–1854. doi: 10.1074/jbc.275.3.1846
  • Capalbo L, Bassi ZI, Geymonat M, et al. The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun. 2019;10(1):4513. doi: 10.1038/s41467-019-12507-9
  • Conti D, Gul P, Islam A, et al. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. Elife. 2019;8:e49325. doi: 10.7554/eLife.49325
  • Margolis SS, Walsh S, Weiser DC, et al. PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. Embo J. 2003;22(21):5734–5745. doi: 10.1093/emboj/cdg545
  • Smith RJ, Cordeiro MH, Davey NE, et al. PP1 and PP2A use opposite phospho-dependencies to control distinct processes at the kinetochore. Cell Rep. 2019;28(8):2206–19.e8. doi: 10.1016/j.celrep.2019.07.067
  • Nasa I, Rusin SF, Kettenbach AN, et al. Aurora B opposes PP1 function in mitosis by phosphorylating the conserved PP1-binding RVxF motif in PP1 regulatory proteins. Sci Signaling. 2018;11(530):11. doi: 10.1126/scisignal.aai8669
  • Kwon YG, Lee SY, Choi Y, et al. Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proceedings of the National Academy of Sciences of the United States of America. 1997; 94:2168–2173.
  • Dohadwala M, da Cruze Silva EF, Hall FL, et al. Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci USA. 1994; 91:6408–6412 doi: 10.1073/pnas.91.14.6408.
  • Mitsuhashi S, Matsuura N, Ubukata M, et al. Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. Biochem Biophys Res Commun. 2001;287(2):328–331. doi: 10.1006/bbrc.2001.5596
  • Wang Y, Hoermann B, Pavic K, et al. Interrogating PP1 activity in the MAPK pathway with optimized PP1-disrupting peptides. Chembiochem. 2019;20(1):66–71. doi: 10.1002/cbic.201800541
  • Kalous J, Solc P, Baran V, et al. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol Cell. 2006;98(2):111–123. doi: 10.1042/BC20050020
  • Fabritius AS, Ellefson ML, McNally FJ. Nuclear and spindle positioning during oocyte meiosis. Curr Opinion Cell Biol. 2011;23(1):78–84. doi: 10.1016/j.ceb.2010.07.008
  • Mitsuhashi S, Shima H, Tanuma N, et al. Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo. J Biol Chem. 2003;278(1):82–88. doi: 10.1074/jbc.M208888200
  • Nguyen AL, Gentilello AS, Balboula AZ, et al. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J Cell Sci. 2014;127:5066–5078. doi: 10.1242/jcs.158840
  • Wang Q, Wei H, Du J, et al. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis. Cell Cycle (Georgetown, Tex). 2016;15(2):213–224. doi: 10.1080/15384101.2015.1121330
  • Han SJ, Vaccari S, Nedachi T, et al. Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. Embo J. 2006;25(24):5716–5725. doi: 10.1038/sj.emboj.7601431
  • Reither G, Chatterjee J, Beullens M, et al. Chemical activators of protein phosphatase-1 induce calcium release inside intact cells. Chem Biol. 2013;20(9):1179–1186. doi: 10.1016/j.chembiol.2013.07.008
  • Beullens M, Vulsteke V, Van Eynde A, et al. The C-terminus of NIPP1 (nuclear inhibitor of protein phosphatase-1) contains a novel binding site for protein phosphatase-1 that is controlled by tyrosine phosphorylation and RNA binding. Biochem J. 2000;352(Pt 3):651–658. doi: 10.1042/bj3520651
  • Chatterjee J, Beullens M, Sukackaite R, et al. Development of a peptide that selectively activates protein phosphatase‐1 in living cells. Angewandte Chemie. 2012;51(40):10054–10059. doi: 10.1002/anie.201204308
  • Moura M, Conde C. Phosphatases in mitosis: roles and regulation. Biomolecules. 2019;9(2):55. doi: 10.3390/biom9020055
  • Stein P, Schindler K. Mouse oocyte microinjection, maturation and ploidy assessment. J Vis Exp. 2011;53:2851. doi: 10.3791/2851-v
  • Tsafriri A, Chun S-Y, Zhang R, et al. Oocyte maturation involves compartmentalization and opposing changes of camp levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biology. 1996;178(2):393–402. doi: 10.1006/dbio.1996.0226
  • Zuccotti M, Ponce RH, Boiani M, et al. The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote. 2002;10(1):73–78. doi: 10.1017/S0967199402002101
  • Bellone M, Zuccotti M, Redi CA, et al. The position of the germinal vesicle and the chromatin organization together provide a marker of the developmental competence of mouse antral oocytes. Reproduction. 2009;138(4):639–643. doi: 10.1530/REP-09-0230
  • Vallardi G, Cordeiro MH, Saurin AT. A kinase-phosphatase network that regulates kinetochore-microtubule attachments and the SAC. In: Black B, editor Centromeres and kinetochores: discovering the molecular mechanisms underlying chromosome inheritance. Springer Cham; 2017. pp. 457–484 978-3-319-58592-5 .
  • Carmody LC, Baucum AJ 2nd, Bass MA, et al. Selective targeting of the γ1 isoform of protein phosphatase 1 to F-actin in intact cells requires multiple domains in spinophilin and neurabin. FASEB J. 2008;22(6):1660–1671. doi: 10.1096/fj.07-092841
  • Canals D, Roddy P, Hannun YA. Protein phosphatase 1α mediates ceramide-induced erm protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J Biol Chem. 2012;287(13):10145–10155. doi: 10.1074/jbc.M111.306456
  • Vallée B, Cuberos H, Doudeau M, et al. LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J. 2018;475(23):3745–3761. doi: 10.1042/BCJ20170961
  • Evans JP, Robinson DN. The spatial and mechanical challenges of female meiosis. Mol Reprod Dev. 2011;78(10–11):769–777. doi: 10.1002/mrd.21358
  • Uraji J, Scheffler K, Schuh M. Functions of actin in mouse oocytes at a glance. J Cell Sci. 2018;131(22):131. doi:10.1242/jcs.218099
  • Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. Biochim Biophys Acta, Mol Cell Res. 2019;1866(1):90–101. doi: 10.1016/j.bbamcr.2018.07.016
  • Bui H-T, Yamaoka E, Miyano T. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes. Biol Reprod. 2004;70(6):1843–1851. doi: 10.1095/biolreprod.103.026070
  • Bogolyubova I, Bogolyubov D. Heterochromatin morphodynamics in late oogenesis and early embryogenesis of mammals. Cells. 2020;9(6):1497. doi: 10.3390/cells9061497
  • de Castro IJ, Budzak J, Di Giacinto ML, et al. Repo-man/PP1 regulates heterochromatin formation in interphase. Nat Commun. 2017;8(1):14048. doi: 10.1038/ncomms14048
  • Hirota T, Lipp JJ, Toh B-H, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature. 2005;438(7071):1176–1180. doi: 10.1038/nature04254
  • Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005;438(7071):1116–1122. doi:10.1038/nature04219
  • Piskadlo E, Tavares A, Oliveira RA. Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation. Elife. 2017;6:e26120. doi: 10.7554/eLife.26120
  • Hirota T, Gerlich D, Koch B, et al. Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci. 2004;117(26):6435–6445. doi: 10.1242/jcs.01604
  • Qian J, Lesage B, Beullens M, et al. PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol. 2011;21(9):766–773. doi: 10.1016/j.cub.2011.03.047
  • Balboula AZ, Schindler K, Ohkura H. Selective disruption of aurora C kinase reveals distinct functions from auroraB kinase during meiosis in mouse oocytes. PLoS Genet. 2014;10(2):e1004194. doi: 10.1371/journal.pgen.1004194
  • Giet R, Glover DM. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Bio. 2001;152(4):669–682. doi: 10.1083/jcb.152.4.669
  • Lee J, Ogushi S, Saitou M, et al. Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes?. Mol Biol Cell. 2011;22(18):3465–3477. doi: 10.1091/mbc.e11-05-0423
  • Olsen JV, Vermeulen M, Santamaria A, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signaling. 2010;3(104):ra3–ra. doi: 10.1126/scisignal.2000475
  • Gallego M, Kang H, Virshup DM. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J. 2006;399(1):169–175. doi: 10.1042/BJ20060678
  • Dingar D, Tu WB, Resetca D, et al. MYC dephosphorylation by the PP1/PNUTS phosphatase complex regulates chromatin binding and protein stability. Nat Commun. 2018;9(1):3502. doi: 10.1038/s41467-018-05660-0
  • Kim T, Lara-Gonzalez P, Prevo B, et al. Kinetochores accelerate or delay APC/C activation by directing Cdc20 to opposing fates. Genes Dev. 2017;31(11):1089–1094. doi: 10.1101/gad.302067.117
  • Thomas C, Wetherall B, Levasseur MD, et al. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat Commun. 2021;12(1):4322. doi: 10.1038/s41467-021-24554-2
  • Levasseur MD, Thomas C, Davies OR, et al. Aneuploidy in oocytes is prevented by sustained CDK1 activity through degron masking in cyclin B1. Dev Cell. 2019;48(5):672–684. doi: 10.1016/j.devcel.2019.01.008
  • Xu P, Raetz EA, Kitagawa M, et al. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open. 2013;2(5):479–486. doi: 10.1242/bio.20134051
  • Nijenhuis W, Vallardi G, Teixeira A, et al. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol. 2014;16(12):1257–1264. doi: 10.1038/ncb3065
  • Liu D, Vleugel M, Backer CB, et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Bio. 2010;188(6):809–820. doi: 10.1083/jcb.201001006
  • Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div. 2020;15(1):9. doi: 10.1186/s13008-020-00065-2
  • Li J, Qian WP, Sun QY. Cyclins regulating oocyte meiotic cell cycle progression. Biol Reprod. 2019;101(5):878–881. doi: 10.1093/biolre/ioz143
  • Kishimoto T. MPF-based meiotic cell cycle control: half a century of lessons from starfish oocytes. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(4):180–203. doi: 10.2183/pjab.94.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.