293
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Pan-cancer integrated bioinformatic analysis of RNA polymerase subunits reveal RNA Pol I member CD3EAP regulates cell growth by modulating autophagy

, , , , , , & ORCID Icon show all
Pages 1986-2002 | Received 10 Dec 2022, Accepted 27 Sep 2023, Published online: 05 Oct 2023

References

  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel) Internet. 2014 [[cited 2022 Oct 26]];6:1769. PMC4190567 doi: 10.3390/cancers6031769
  • Dang CV, Reddy EP, Shokat KM, et al. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 2017 [[cited 2022 Oct 26]]; 17(8):502. PMC5945194 doi: 10.1038/nrc.2017.36
  • Donato L, Alibrandi S, Scimone C, et al. The impact of modifier genes on cone-rod dystrophy heterogeneity: an explorative familial pilot study and a hypothesis on neurotransmission impairment.PLoS One. 2022 [[cited 2023 Sep 24]];17(12):e0278857. doi: 10.1371/journal.pone.0278857
  • Sidoti A, Antognelli C, Rinaldi C, et al. Glyoxalase I A111E, paraoxonase 1 Q192R and L55M polymorphisms: susceptibility factors of multiple sclerosis? Mult Scler. 2007;13(4):446–453. doi: 10.1177/13524585070130040201
  • Scimone C, Donato L, Alafaci C, et al. High-throughput sequencing to detect novel likely gene-disrupting variants in pathogenesis of sporadic brain arteriovenous malformations. Front Genet [Internet]. 2020 [[cited 2023 Sep 24]];11: doi: 10.3389/fgene.2020.00146
  • Scimone C, Donato L, Marino S, et al. Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci [Internet]. 2019 [[cited 2023 Sep 24]]; 40(2):243–251. doi: 10.1007/s10072-018-3674-x
  • Donato L, Scimone C, Alibrandi S, et al. Epitranscriptome analysis of oxidative stressed retinal epithelial cells depicted a possible RNA editing landscape of retinal degeneration. Antioxidants Internet. 2022 [[cited 2023 Sep 24]]; 11(10):1967. doi: 10.3390/antiox11101967
  • Neufeld TP, Edgar BA. Connections between growth and the cell cycle. Curr Opin Cell Biol. 1998;10(6):784–790. doi: 10.1016/S0955-0674(98)80122-1
  • White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol [Internet]. 2005 [[cited 2022 Oct 27]]; 6(1):69–78. doi: 10.1038/nrm1551
  • Francis MA, Rajbhandary UL. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae.Mol Cell Biol. 1990 [[cited 2022 Oct 27]];10(9):4486–4494. doi: 10.1128/MCB.10.9.4486
  • Liu Y, Deisenroth C, Zhang Y. RP–MDM2–p53 pathway: linking ribosomal biogenesis and tumor surveillance. Trends Cancer [Internet]. 2016 [[cited 2022 Oct 27]]; 2(4):191. PMC5531060 doi: 10.1016/j.trecan.2016.03.002
  • Xu Y, Wu Y, Wang L, et al. Identification of curcumin as a novel natural inhibitor of rDNA transcription. Cell Cycle [Internet]. 2020 [[cited 2023 Sep 24]]; 19(23):3362–3374. doi: 10.1080/15384101.2020.1843817
  • Xu Y, Wan W. The bifunctional role of TP53INP2 in transcription and autophagy. Autophagy [Internet]. 2020 [[cited 2023 Sep 24]]; 16(7):1341–1343. doi: 10.1080/15548627.2020.1713646
  • Xu Y, Wan W, Shou X, et al. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters. Autophagy [Internet]. 2016 [[cited 2023 Sep 24]]; 12(7):1118–1128. doi: 10.1080/15548627.2016.1175693
  • Ferreira R, Schneekloth JS, Panov KI, et al. Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells [Internet]. 2020 [[cited 2022 Oct 27]]; 9(2):266. doi: 10.3390/cells9020266
  • Durrieu-Gaillard S, Dumay-Odelot H, Boldina G, et al. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Cell Cycle Internet. 2018 [[cited 2022 Oct 27]];17(5):605–615. doi: 10.1080/15384101.2017.1405881
  • Zhong Q, Xi S, Liang J, et al. The significance of Brf1 overexpression in human hepatocellular carcinoma. Oncotarget [Internet]. 2016 [[cited 2022 Oct 27]]; 7(5):6243–6254. doi: 10.18632/oncotarget.6668
  • Berico P, Coin F. Is TFIIH the new Achilles heel of cancer cells? Transcription [Internet]. 2018 [[cited 2022 Oct 27]];9:47. PMC5791811 doi: 10.1080/21541264.2017.1331723
  • Liu Y, Zhang X, Han C, et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature [Internet]. 2015 [[cited 2022 Oct 19]];520:697–701. doi: 10.1038/nature14418
  • Johnson SAS, Lin JJ, Walkey CJ, et al. Elevated TATA-binding protein expression drives vascular endothelial growth factor expression in colon cancer. Oncotarget [Internet]. 2017 [[cited 2022 Oct 27]]; 8(30):48832–48845. doi: 10.18632/oncotarget.16384
  • Martin RD, Hébert TE, Tanny JC. Therapeutic targeting of the General RNA polymerase II transcription machinery. Int J Mol Sci 2020 [[cited 2022 Oct 27]]; 21(9):3354. PMC7246882. doi: 10.3390/ijms21093354
  • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–1251. doi: 10.1016/j.cell.2013.02.014
  • Chaudhary K, Deb S, Moniaux N, et al. Human RNA polymerase II-associated factor complex: dysregulation in cancer. Oncogene [Internet]. 2007 [[cited 2022 Oct 27]];26:7499–7507. doi: 10.1038/sj.onc.1210582
  • Parker J. RNA polymerase. Encyclopedia Of Genetics [Internet] 2001 [[cited 2022 Oct 27]];1746–1747. Available from: https://linkinghub.elsevier.com/retrieve/pii/B0122270800011356.
  • Dong A, Wang ZW, Ni N, et al. Similarity and difference of pathogenesis among lung cancer subtypes suggested by expression profile data. Pathol Res Pract. 2021;220:153365. doi: 10.1016/j.prp.2021.153365
  • Antonacopoulou AG, Grivas PD, Skarlas L, et al. POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: new molecules with prognostic significance? Anticancer Res. 2008;28:1221–1227.
  • Yang Y, Yan R, Zhang L, et al. Primary glioblastoma transcriptome data analysis for screening survival-related genes. J Cell Biochem. 2020;121(2):1901–1910. doi: 10.1002/jcb.29425
  • Ye Q, Singh S, Qian PR, et al. Immune-omics networks of cd27, pd1, and pdl1 in non-small cell lung cancer. Cancers (Basel). 2021;13(17):4296. doi: 10.3390/cancers13174296
  • Zhou D, Li X, Zhao H, et al. Combining multi-dimensional data to identify a key signature (gene and miRNA) of cisplatin-resistant gastric cancer. J Cell Biochem. 2018;119(8):6997–7008. doi: 10.1002/jcb.26908
  • Yao F, Zhan Y, Li C, et al. Single-cell RNA sequencing reveals the role of phosphorylation-related genes in hepatocellular carcinoma stem cells. Front Cell Dev Biol. 2022;9. doi: 10.3389/fcell.2021.734287
  • Hu X, Wang R, Ren Z, et al. MiR-26b suppresses hepatocellular carcinoma development by negatively regulating ZNRD1 and Wnt/β-catenin signaling. Cancer Med. 2019;8(17):7359–7371. doi: 10.1002/cam4.2613
  • Hong L, Han Y, Shi R, et al. ZNRD1 gene suppresses cell proliferation through cell cycle arrest in G1 phase. Cancer Biol Ther. 2005;4(1):67–71. doi: 10.4161/cbt.4.1.1375
  • Hong L, Piao Y, Han Y, et al. Zinc ribbon domain-containing 1 (ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and bcl-2. Mol Cancer Ther. 2005 [[cited 2022 Oct 21]];4(12):1936–1942. doi: 10.1158/1535-7163.MCT-05-0182
  • Ghesh L, Vincent M, Delemazure AS, et al. Autosomal recessive Treacher Collins syndrome due to POLR1C mutations: report of a new family and review of the literature. Am J Med Genet A. 2019;179(7):1390–1394. doi: 10.1002/ajmg.a.61147
  • Yin J, Wang H, Vogel U, et al. Association and interaction of NFKB1 rs28362491 insertion/deletion ATTG polymorphism and PPP1R13L and CD3EAP related to lung cancer risk in a Chinese population. Tumor Biol. 2016;37(4):5467–5473. doi: 10.1007/s13277-015-4373-3
  • Nissen KK, Vogel U, Nexø BA. Association of a single nucleotide polymorphic variation in the human chromosome 19q13.3 with drug responses in the NCI60 cell lines. Anticancer Drugs. 2009;20(3):174–178. doi: 10.1097/CAD.0b013e3283229ae3
  • Negi SS, Brown P. rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis.Oncotarget [Internet]. 2015 [[cited 2022 Oct 26]];6(20):18094–18104. doi: 10.18632/oncotarget.4093
  • Sanij E, Hannan KM, Xuan J, et al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat Commun [Internet]. 2020 [[cited 2022 Oct 26]];11(1):1–18. doi: 10.1038/s41467-020-16393-4
  • Li L, Li Y, Zhao J, et al. CX-5461 induces autophagy and inhibits tumor growth via mammalian target of rapamycin-related signaling pathways in osteosarcoma. Onco Targets Ther [Internet]. 2016 [[cited 2022 Oct 26]];9:5985. PMC5047727 doi: 10.2147/OTT.S104513
  • Xu Y, Wan W. Autophagy regulates rRNA synthesis. Nucleus [Internet]. 2022 [[cited 2023 Sep 24]];13:203–207. Available from: https://pubmed.ncbi.nlm.nih.gov/35993412/
  • Xu Y, Wu Y, Wang L, et al. Autophagy deficiency activates rDNA transcription. Autophagy [Internet]. 2022 [[cited 2023 Sep 24]]; 18(6):1338–1349. doi: 10.1080/15548627.2021.1974178
  • Maeta M, Kataoka M, Nishiya Y, et al. RNA polymerase II subunit D is essential for zebrafish development. Sci Rep. 2020;10(1):10. doi: 10.1038/s41598-020-70110-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.