123
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Identification of molecular subtypes and prognostic model to reveal immune infiltration and predict prognosis based on immunogenic cell death-related genes in lung adenocarcinoma

, , , , , , , , , , & show all
Pages 2566-2583 | Received 13 Apr 2023, Accepted 25 Dec 2023, Published online: 02 Jan 2024

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. Ca A Cancer J Clinicians. 2023 Jan;73(1):17–48. doi: 10.3322/caac.21763
  • Lovly CM. Expanding horizons for treatment of early-stage lung cancer. N Engl J Med. 2022 May;386(21):2050–2051. doi: 10.1056/NEJMe2203330
  • Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. (London, England). 2019 May 4;393(10183):1819–1830. doi: 10.1016/s0140-6736(18)32409-7; (London, England).
  • Vansteenkiste J, Wauters E, Reymen B, et al. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann Oncol. 2019 Aug 1;30(8):1244–1253. doi: 10.1093/annonc/mdz175; PubMed PMID: 31143921; eng.
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-Positive non-small-cell lung cancer. N Engl J Med. 2016 Nov 10;375(19): 1823–1833. doi: 10.1056/NEJMoa1606774; PubMed PMID: 27718847; eng.
  • Galluzzi L, Buqué A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017 Feb;17(2):97–111. doi: 10.1038/nri.2016.107; PubMed PMID: 27748397; eng.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on cell death 2018. Cell Death Differ. 2018 Mar;25(3):486–541. doi: 10.1038/s41418-017-0012-4; PubMed PMID: 27748397; eng.
  • Garg AD, Galluzzi L, Apetoh L, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi: 10.3389/fimmu.2015.00588; PubMed PMID: 26635802; PubMed Central PMCID: PMCPMC4653610. eng.
  • Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 2007 Jan;13(1):54–61. doi: 10.1038/nm1523; PubMed PMID: 17187072; eng.
  • Krombach J, Hennel R, Brix N, et al. Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology. 2019;8(1):e1523097. doi: 10.1080/2162402x.2018.1523097; PubMed PMID: 30546963; PubMed Central PMCID: PMCPMC6287777. eng.
  • Hayashi K, Nikolos F, Lee YC, et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun. 2020 Dec 7;11(1): 6299. doi: 10.1038/s41467-020-19970-9; PubMed PMID: 33288764; PubMed Central PMCID: PMCPMC7721802. eng.
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Med. 2018 May;24(5):541–550. doi: 10.1038/s41591-018-0014-x; PubMed PMID: 29686425; PubMed Central PMCID: PMCPMC5998822. eng.
  • Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 Sep 15;79(18):4557–4566. doi: 10.1158/0008-5472.Can-18-39620; PubMed PMID: 31350295; PubMed Central PMCID: PMCPMC6744958. eng.
  • Heymann MF, Lézot F, Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol. 2019 Sep;343:103711. doi: 10.1016/j.cellimm.2017.10.011; PubMed PMID: 29117898; eng.
  • Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnol. 2020 Jun;38(6):675–678. doi: 10.1038/s41587-020-0546-8; PubMed PMID: 32444850; PubMed Central PMCID: PMCPMC7386072. eng.
  • Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 26(12): (Oxford, England). 1572–1573. 2010 Jun 15. doi: 10.1093/bioinformatics/btq170; PubMed PMID: 20427518; PubMed Central PMCID: PMCPMC2881355. eng.
  • Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013 Dec 30;32(30):5381–97. doi: 10.1002/sim.5958; PubMed PMID: 24027076; eng.
  • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Medical Decis Mak. 2006 Nov-Dec;26(6):565–574. doi: 10.1177/0272989x06295361; PubMed PMID: 17099194; PubMed Central PMCID: PMCPMC2577036. eng.
  • Garg AD, De Ruysscher D, Agostinis P. Immunological metagene signatures derived from immunogenic cancer cell death associate with improved survival of patients with lung, breast or ovarian malignancies: a large-scale meta-analysis. Oncoimmunology. 2016 Feb;5(2):e1069938. doi: 10.1080/2162402x.2015.1069938; PubMed PMID: 27057433; PubMed Central PMCID: PMCPMC4801472. eng.
  • Rodriguez-Ruiz ME, Vitale I, Harrington KJ, et al. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 2020 Feb;21(2):120–134. doi: 10.1038/s41590-019-0561-4; PubMed PMID: 31873291; eng.
  • Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci. 2019 Feb 22;20(4). doi: 10.3390/ijms20040959; PubMed PMID: 30813267; PubMed Central PMCID: PMCPMC6412296. eng.
  • Li X. The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 2018 Jan-Feb;104(1):1–8. doi: 10.5301/tj.5000675; PubMed PMID: 28967094; eng.
  • Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy. Biochem Pharmacol. 2018 Jul;153:12–23. doi: 10.1016/j.bcp.2018.02.006; PubMed PMID: 29438676; eng.
  • Zhou J, Wang G, Chen Y, et al. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019 Aug;23(8):4854–4865. doi: 10.1111/jcmm.14356; PubMed PMID: 31210425; PubMed Central PMCID: PMCPMC6653385. eng.
  • Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017 Nov;280(1):126–148. doi: 10.1111/imr.12574; PubMed PMID: 29027218; eng.
  • Liu L, Zhong X, Cui H, et al. Identification of an individualized prognostic signature based on the RWSR model in early-stage bladder carcinoma. Bio Med Res Int. 2020;2020:9186546. doi: 10.1155/2020/9186546; PubMed PMID: 32596394; PubMed Central PMCID: PMCPMC7293744. eng.
  • Feng Y, Xiong X, Wang Y, et al. Genomic analysis reveals the prognostic and Immunotherapeutic response characteristics of ferroptosis in lung squamous cell carcinoma. Lung. 2022 Jun;200(3):381–392. doi: 10.1007/s00408-022-00537-y; PubMed PMID: 35511293; eng.
  • Zhao Z, Liu H, Zhou X, et al. Necroptosis-related lncRnas: predicting prognosis and the distinction between the cold and hot tumors in gastric cancer. J Oncol. 2021;2021:1–16. doi: 10.1155/2021/6718443; PubMed PMID: 34790235; PubMed Central PMCID: PMCPMC8592775 publication of this study. eng.
  • Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 2021 Apr 7;7(1):71. doi: 10.1038/s41420-021-00451-x; PubMed PMID: 33828074; PubMed Central PMCID: PMCPMC8026591. eng.
  • Galluzzi L, Vitale I, Warren S, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. Journal For Immuno Therapy Of Cancer. 2020 Mar;8(1): doi: 10.1136/jitc-2019-000337; PubMed PMID: 32209603; PubMed Central PMCID: PMCPMC7064135. eng.
  • Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Scis. 2014 Mar;13(3):474–487. doi: 10.1039/c3pp50333j; PubMed PMID: 24493131; eng.
  • Huang X, Tang T, Zhang G, et al. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer. 2021 Mar 8;20(1):50. doi: 10.1186/s12943-021-01342-6; PubMed PMID: 33685460; PubMed Central PMCID: PMCPMC7938044. eng.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005 Oct 25;102(43): 15545–50. 10.1073/pnas.0506580102; PubMed PMID: 16199517; PubMed Central PMCID: PMCPMC1239896. eng.
  • Wang Q, Chen Y, Gao W, et al. Identification and validation of a four-gene ferroptosis signature for predicting overall survival of lung squamous cell carcinoma. Front Oncol. 2022;12:933925. doi: 10.3389/fonc.2022.933925
  • Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. doi: 10.1038/ncomms3612; PubMed PMID: 24113773; PubMed Central PMCID: PMCPMC3826632. eng.
  • Qian H, Lei T, Hu Y, et al. Expression of lipid-metabolism genes is correlated with immune microenvironment and predicts prognosis in osteosarcoma. Front Cell Dev Biol. 2021;9:673827. doi: 10.3389/fcell.2021.673827
  • Feng H, Zhao Y, Yan W, et al. Identification of signature genes and characterizations of tumor immune microenvironment and tumor purity in lung adenocarcinoma based on machine learning. Front Med (Lausanne). 2022;9:843749. doi: 10.3389/fmed.2022.843749; PubMed PMID: 35280857; PubMed Central PMCID: PMCPMC8916235. eng.
  • Li N, Li Y, Zheng P, et al. Cancer Stemness-Based Prognostic Immune-related gene signatures in lung adenocarcinoma and lung squamous cell carcinoma. Front Endocrinol (Lausanne). 2021;12:755805. doi: 10.3389/fendo.2021.755805; PubMed PMID: 34745015; PubMed Central PMCID: PMCPMC8567176. eng.
  • Luo X, Cheng C, Tan Z, et al. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017 Apr 11;16(1):76. doi: 10.1186/s12943-017-0646-3; PubMed PMID: 28399876; PubMed Central PMCID: PMCPMC5387196. eng.
  • Gallegos Ruiz MI, Floor K, Roepman P, et al. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One. 2008 Mar 5;3(3): e0001722. 10.1371/journal.pone.0001722; PubMed PMID: 18320023; PubMed Central PMCID: PMCPMC2254495. eng.
  • Patel K, Wen J, Magliocca K, et al. Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation. Cancer Chemother Pharmacol. 2014 Nov;74(5):1015–1022. doi: 10.1007/s00280-014-2584-8; PubMed PMID: 25205430; eng.
  • Huang T, Chen S, Han H, et al. Expression of Hsp90α and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation. Int J Clin Exp Pathol. 2014;7(4):1544–52. PubMed PMID: 24817950; PubMed Central PMCID: PMCPMC4014234. eng.
  • McCarthy MM, Pick E, Kluger Y, et al. HSP90 as a marker of progression in melanoma. Ann Oncol. 2008 Mar;19(3):590–4. doi: 10.1093/annonc/mdm545; PubMed PMID: 18037622; eng.
  • Alberti G, Vergilio G, Paladino L, et al. The chaperone system in breast cancer: roles and therapeutic prospects of the molecular chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci. 2022 Jul;23(14):7792.
  • Zavareh RB, Spangenberg SH, Woods A, et al. HSP90 inhibition enhances cancer immunotherapy by modulating the surface expression of multiple immune checkpoint proteins. Cell Chem Biol. 2021 Feb;28(2):158–168.e5.
  • Zhou C, Yu T, Zhu R, et al. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. Int J Biol Sci. 2023 Feb;19(5):1471–1489.
  • Rao A, Taylor JL, Chi-Sabins N, et al. Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells. Cancer Res. 2012 Jul;72(13):3196–206.
  • Mbofung RM, McKenzie JA, Malu S, et al. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat Commun. 2017 Sep;8(1):451. doi: 10.1038/s41467-017-00449-z
  • Rahmy S, Mishra SJ, Murphy S, et al. Hsp90β inhibition upregulates interferon response and enhances immune checkpoint blockade therapy in murine tumors. Front Immunol. 2022 Oct;13:1005045.
  • Ge F, Wang Y, Sharma A, et al. Cytokine-induced killer cells in combination with heat shock protein 90 inhibitors functioning via the fas/fasL axis provides rationale for a potential clinical benefit in burkitt’s lymphoma. Int J Mol Sci. 2023 Aug;24(15):12476.
  • Xie M, Yu T, Jing X, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 2020 Jun;19(1):112. doi: 10.1186/s12943-020-01208-3
  • Liu Z, Wei L, You G, et al. Genomic analysis of immunogenic cell death-related subtypes for predicting prognosis and immunotherapy outcomes in glioblastoma multiforme. Open Med (Wars). 2023 Jun;18(1):20230716. doi: 10.1515/med-2023-0716
  • Liao Y, Wang Y, Cheng M, et al. Weighted gene coexpression network analysis of features that control cancer stem cells reveals prognostic biomarkers in lung adenocarcinoma. Front Genet. 2020 Apr;11:311.
  • Liao Y, He D, Wen F. Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy. Immunogenetics. 2021 Oct;73(5):369–380. doi: 10.1007/s00251-021-01223-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.