150
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation

, , , , , , & show all
Pages 233-247 | Received 30 Mar 2021, Accepted 08 Nov 2023, Published online: 29 Mar 2024

References

  • Brody H. Colorectal cancer. Nature. 2015;521(7551):S1. doi: 10.1038/521S1a
  • Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–253. doi: 10.1038/nrc3007
  • Habibullah G, Gul R, Cassum S, et al. Experiences of the breast cancer patients undergoing radiotherapy at a public hospital Peshawar Pakistan. Asia Pac J Oncol Nurs. 2018;5(2):184–194. doi: 10.4103/apjon.apjon_70_17
  • Kasi A, Abbasi S, Handa S, et al. Total neoadjuvant therapy vs standard therapy in locally advanced rectal cancer: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(12):e2030097. doi: 10.1001/jamanetworkopen.2020.30097
  • Fokas E, Schlenska-Lange A, Polat B, et al. Chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for patients with locally advanced rectal cancer: long-term results of the CAO/ARO/AIO-12 randomized clinical trial. JAMA Oncol. 2022;8(1):e215445. doi: 10.1001/jamaoncol.2021.5445
  • Cercek A, Roxburgh CSD, Strombom P, et al. Adoption of total neoadjuvant therapy for locally advanced rectal cancer. JAMA Oncol. 2018;4(6):e180071. doi: 10.1001/jamaoncol.2018.0071
  • Folkesson J, Birgisson H, Pahlman L, et al. Swedish rectal cancer trial: long lasting benefits from radiotherapy on survival and local recurrence rate. J Clin Oncol. 2005;23(24):5644–5650. doi: 10.1200/JCO.2005.08.144
  • Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. 2013;25(10):578–585. doi: 10.1016/j.clon.2013.06.007
  • Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64. doi: 10.1016/j.tcb.2015.07.009
  • Stiff T, O’Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64(7):2390–2396. doi: 10.1158/0008-5472.CAN-03-3207
  • Lee BS, Cho YW, Kim GC, et al. Induced phenotype targeted therapy: radiation-induced apoptosis-targeted chemotherapy. JNCI. 2015;107(2):2015. doi: 10.1093/jnci/dju403
  • Yu J, Wang Q, Chen N, et al. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells. J Radiat Res. 2013;54(6):998–1004. doi: 10.1093/jrr/rrt046
  • Gong B, Chen Q, Almasan A. Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res. 1998;150(5):505–512. doi: 10.2307/3579866
  • Shimura T, Hamada N, Sasatani M, et al. Nuclear accumulation of cyclin D1 following long-term fractionated exposures to low-dose ionizing radiation in normal human diploid cells. Cell Cycle. 2014;13(8):1248–1255. doi: 10.4161/cc.28139
  • Gilquin B, Cannon BR, Hubstenberger A, et al. The calcium-dependent interaction between S100B and the mitochondrial AAA ATPase ATAD3A and the role of this complex in the cytoplasmic processing of ATAD3A. Mol Cell Biol. 2010;30(11):2724–2736. doi: 10.1128/MCB.01468-09
  • Teng Y, Ren X, Li H, et al. Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein. Oncogene. 2016;35(3):333–343. doi: 10.1038/onc.2015.86
  • Lang L, Loveless R, Teng Y. Emerging links between control of mitochondrial protein ATAD3A and cancer. Int J Mol Sci. 2020;21(21):2020. doi: 10.3390/ijms21217917
  • You WC, Chiou SH, Huang CY, et al. Mitochondrial protein ATPase family, AAA domain containing 3A correlates with radioresistance in glioblastoma. Neuro Oncol. 2013;15(10):1342–1352. doi: 10.1093/neuonc/not077
  • Santama N, Ogg SC, Malekkou A, et al. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem. 2005;280(43):36429–36441. doi: 10.1074/jbc.M501982200
  • Juhnke H, Charizanis C, Latifi F, et al. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol. 2000;35(4):936–948. doi: 10.1046/j.1365-2958.2000.01768.x
  • Granneman S, Nandineni MR, Baserga SJ. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol. 2005;25(23):10352–10364. doi: 10.1128/MCB.25.23.10352-10364.2005
  • Zhang J, Bai D, Ma X, et al. hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene. 2014;33(2):246–254. doi: 10.1038/onc.2012.560
  • Zhang J, Zhang F, Zheng X. Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci. 2010;67(11):1907–1918. doi: 10.1007/s00018-010-0301-2
  • Ji Y, Yang C, Tang Z, et al. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun. 2017;8(1):15308. doi: 10.1038/ncomms15308
  • Rahmanian N, Hosseinimehr SJ, Khalaj A. The paradox role of caspase cascade in ionizing radiation therapy. J Biomed Sci. 2016;23(1):88. doi: 10.1186/s12929-016-0306-8
  • Huang GM, Sun Y, Ge X, et al. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. World J Gastroenterol. 2015;21(20):6194–6205. doi: 10.3748/wjg.v21.i20.6194
  • Harel T, Yoon WH, Garone C, et al. Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. Am J Hum Genet. 2016;99(4):831–845. doi: 10.1016/j.ajhg.2016.08.007
  • Xu R, Yu S, Zhu D, et al. hCINAP regulates the DNA-damage response and mediates the resistance of acute myelocytic leukemia cells to therapy. Nat Commun. 2019;10(1):3812. doi: 10.1038/s41467-019-11795-5
  • Hill MA. Radiation damage to DNA: the importance of track structure. Radiat Meas. 1999;31(1–6):15–23. doi: 10.1016/S1350-4487(99)00090-6
  • Bai D, Zhang J, Li T, et al. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth. Nat Commun. 2016;7(1):12310. doi: 10.1038/ncomms12310
  • Qu L, Ji Y, Zhu X, et al. hCINAP negatively regulates NF-κB signaling by recruiting the phosphatase PP1 to deactivate IKK complex. J Mol Cell Biol. 2015;7(6):529–542. doi: 10.1093/jmcb/mjv041
  • Dey A, Lane DP, Verma CS. Modulating the p53 pathway. Semin Cancer Biol. 2010;20(1):3–9. doi: 10.1016/j.semcancer.2010.02.004
  • Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60. doi: 10.1016/j.canlet.2011.12.012
  • Chen N, Wu L, Yuan H, et al. Ros/autophagy/Nrf2 pathway mediated low-dose radiation induced radio-resistance in human lung adenocarcinoma A549 cell. Int J Biol Sci. 2015;11(7):833–844. doi: 10.7150/ijbs.10564
  • Shimura T, Sasatani M, Kawai H, et al. A comparison of radiation-induced mitochondrial damage between neural progenitor stem cells and differentiated cells. Cell Cycle. 2017;16(6):565–573. doi: 10.1080/15384101.2017.1284716
  • Tapio S, Jacob V. Radioadaptive response revisited. Radiat Environ Biophys. 2007;46(1):1–12. doi: 10.1007/s00411-006-0078-8
  • Zhang Y, Jiang L, Qin N, et al. hCINAP is a potential direct HIF-1 target gene and is required for hypoxia-induced EMT and apoptosis in cervical cancer cells. Biochem Cell Biol. 2020;99(2):203–213. doi: 10.1139/bcb-2020-0090
  • Frickey T, Lupas AN. Frickey T and Lupas AN: phylogenetic analysis of AAA proteins. J Struct Biol. 2004;146(1–2):2–10. doi: 10.1016/j.jsb.2003.11.020
  • Gilquin B, Taillebourg E, Cherradi N, et al. The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol. 2010;30(8):1984–1996. doi: 10.1128/MCB.00007-10
  • Fang HY, Chang CL, Hsu SH, et al. ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci. 2010;123(7):1171–1180. doi: 10.1242/jcs.062034
  • Peralta S, Goffart S, Williams SL, et al. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci. 2018;131:2018. doi: 10.1242/jcs.217075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.