107
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Ginsenoside Rg3 attenuates neuroinflammation and hippocampal neuronal damage after traumatic brain injury in mice by inactivating the NF-kB pathway via SIRT1 activation

, , , , , , & show all
Pages 662-681 | Received 01 Nov 2023, Accepted 07 May 2024, Published online: 25 May 2024

References

  • Dadgostar E, Rahimi S, Nikmanzar S, et al. Aquaporin 4 in traumatic brain injury: From molecular pathways to therapeutic target. Neurochem Res. 2022;47(4):860–871. doi: 10.1007/s11064-021-03512-w
  • Singaravelu Jaganathan K, Sullivan KA. Traumatic brain injury rehabilitation: An exercise immunology perspective. Exerc Immunol Rev. 2022;28:90–97.
  • Visser K, Koggel M, Blaauw J, et al. Blood-based biomarkers of inflammation in mild traumatic brain injury: A systematic review. Neurosci Biobehav Rev. 2022;132:154–168. doi: 10.1016/j.neubiorev.2021.11.036
  • Jellinger KA. Blunt traumatic brain injury and alzheimer pathology. Dementia and geriatric cognitive disorders. Dement Geriatr Cogn Disord. 2022;51(5):428–433. doi: 10.1159/000527686
  • Abner EL, Nelson PT, Schmitt FA, et al. Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort. Dement Geriatr Cogn Disord. 2014;37(5–6):294–306. doi: 10.1159/000355478
  • Wiles MD. Management of traumatic brain injury: a narrative review of current evidence. Anaesthesia. 2022;77(1):102–112. doi: 10.1111/anae.15608
  • Shan Y, Li J, Zhu A, et al. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO‑1‑mediated ferroptosis pathway. Int J Mol Med. 2022;50(1):50. doi: 10.3892/ijmm.2022.5144
  • Ni J, Liu Z, Jiang M, et al. Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway. J Ginseng Res. 2022;46(2):235–247. doi: 10.1016/j.jgr.2021.06.001
  • Wang J, Yu XF, Zhao JJ, et al. Ginsenoside Rg3 attenuated omethoate-induced lung injury in rats. Hum Exp Toxicol. 2016;35(6):677–684. doi: 10.1177/0960327115597984
  • Sun GZ, Meng FJ, Cai HQ, et al. Ginsenoside Rg3 protects heart against isoproterenol-induced myocardial infarction by activating AMPK mediated autophagy. Cardiovasc Diagn Ther. 2020;10(2):153–160. doi: 10.21037/cdt.2020.01.02
  • Hou J, Xue J, Wang Z, et al. Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytother Res. 2018;32(12):2531–2540. doi:10.1002/ptr.6193
  • He B, Chen P, Yang J, et al. Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci lett. 2012;526(2):106–111. doi: 10.1016/j.neulet.2012.08.022
  • Bae EA, Kim EJ, Park JS, et al. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase a pathway in lipopolysaccharide/Interferon-γ-stimulated BV-2 microglial cells. Planta Med. 2006;72(7):627–633. doi: 10.1055/s-2006-931563
  • Han Y, Wang T, Li C, et al. Ginsenoside Rg3 exerts a neuroprotective effect in rotenone-induced Parkinson’s disease mice via its anti-oxidative properties. Eur J Pharmacol. 2021;909:174413. doi: 10.1016/j.ejphar.2021.174413
  • Ahn JW, Jang SK, Jo BR, et al. A therapeutic intervention for Alzheimer’s disease using ginsenoside Rg3: its role in M2 microglial activation and non-amyloidogenesis. J Physiol Pharmacol. 2021;72. doi: 10.26402/jpp.2021.2.04
  • Manninen E, Chary K, De Feo R, et al. Acute hippocampal damage as a prognostic biomarker for cognitive decline but not for epileptogenesis after experimental traumatic brain injury. Biomedicines. 2022;10(11):2721. doi: 10.3390/biomedicines10112721
  • Johanson C, Stopa E, Baird A, et al. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. J Neural Transm (Vienna). 2011;118(1):115–133. doi: 10.1007/s00702-010-0498-0
  • Kim JH, Cho SY, Lee JH, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res. 2007;1136:190–199. doi: 10.1016/j.brainres.2006.12.047
  • Zhang H, Zhou Z, Chen Z, et al. Ginsenoside Rg3 exerts anti-depressive effect on an NMDA-treated cell model and a chronic mild stress animal model. J Pharmacol Sci. 2017;134(1):45–54. doi: 10.1016/j.jphs.2017.03.007
  • You Z, Yao Q, Shen J, et al. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med. 2017;71(2):367–379. doi: 10.1007/s11418-016-1066-1
  • Ren B, Feng J, Yang N, et al. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int Immunopharmacol. 2021;98:107841. doi: 10.1016/j.intimp.2021.107841
  • Tu C, Wan B, Zeng Y. Ginsenoside Rg3 alleviates inflammation in a rat model of myocardial infarction via the SIRT1/NF-κB pathway. Exp Ther Med. 2020;20(6):1–1. doi: 10.3892/etm.2020.9368
  • Song B, Zhou W. Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway. Brain Res Bull. 2022;189:44–56. doi: 10.1016/j.brainresbull.2022.08.018
  • Gao H, Yang L, Shao Y. SIRT1 / NF-κB pathway on neuronal apoptosis in rats with ischemic stroke. Cell Mol Biol. 2022;68(5):77–82. doi: 10.14715/cmb/2022.68.5.10
  • Zhao L, Liu H, Yue L, et al. Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-κB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol. 2017;54(3):1612–1621. doi: 10.1007/s12035-016-9776-7
  • Yang Y, Ye Y, Fan K, et al. MiR-124 reduced neuroinflammation after traumatic brain injury by inhibiting TRAF6. Neuroimmunomodulation. 2023;30(1):55–68. doi: 10.1159/000528502
  • Gao Y, Yan J, Li J, et al. Ginsenoside Rg3 ameliorates acetaminophen-induced hepatotoxicity by suppressing inflammation and oxidative stress. J Pharm Pharmacol. 2021;73(3):322–331. doi: 10.1093/jpp/rgaa069
  • Wang M XX, Gh LQ, Tang J, et al. Neuroprotection of NAD(+) and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Front Pharmacol. 2023;14:1096533. doi: 10.3389/fphar.2023.1096533
  • Yang X, Li X, Yuan Y, et al. 40 Hz blue LED relieves the gamma oscillations changes caused by traumatic brain injury in rat. Front Neurol. 2022;13:882991. doi: 10.3389/fneur.2022.882991
  • Wang XL, Chen F, Shi H, et al. Oxymatrine inhibits neuroinflammation byRegulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway. Int Immunopharmacol. 2021;100:108139. doi: 10.1016/j.intimp.2021.108139
  • Hao K, Chen F, Zhao L, et al. Nicotinamide ameliorates mitochondria-related neuronal apoptosis and cognitive impairment via the NAD(+)/SIRT3 pathway. Vol. 9. Germany): Schizophrenia (Heidelberg; 2023. p. 32.
  • Subramanian SK, Fountain MK, Hood AF, et al. Upper limb motor improvement after traumatic brain injury: systematic review of interventions. Neurorehabil Neural Repair. 2022;36(1):17–37. doi: 10.1177/15459683211056662
  • Chen JQ, Gao SQ, Luo L, et al. Nonoxid-HMGB1 attenuates cognitive impairment after traumatic brain injury in rats. Front Med (Lausanne). 2022;9:827585. doi: 10.3389/fmed.2022.827585
  • Moon D. Disorders of movement due to acquired and traumatic brain injury. Curr Phys Med Rehabilitat Rep. 2022;10(4):311–323. doi: 10.1007/s40141-022-00368-1
  • Zhang Y, Yang X, Wang S, et al. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer’s disease. J Agric Food Chemistry. 2019;67(36):10048–10058. doi: 10.1021/acs.jafc.9b03793
  • Jain N, Skuja S. Perusing structural variations in neurons of substantia nigra of normal versus addicted subjects: a morpho-histological comparison. In: XXIV Student International Conference of Morphology Sciences; RSU Institute of Anatomy and Anthropology, Riga, Latvia; 2019.
  • Duan W, Zhang YP, Hou Z, et al. Novel Insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol. 2016;53(3):1637–1647. doi: 10.1007/s12035-015-9122-5
  • Maurya SK, Bhattacharya N, Mishra S, et al. Microglia specific drug targeting using natural products for the regulation of redox imbalance in neurodegeneration. Front Pharmacol. 2021;12:654489. doi: 10.3389/fphar.2021.654489
  • Liu L, Zhang Y, Tang L, et al. The neuroprotective effect of Byu d Mar 25 in LPS-Induced Alzheimer’s disease mice model. Evidence-based complementary and alternative medicine: eCAM 2021. Evid Based Complement Alternat Med. 2021;2021:1–12. doi: 10.1155/2021/8879014
  • Jiao J, Xue B, Zhang L, et al. Triptolide inhibits amyloid-β1-42-induced TNF-α and IL-1β production in cultured rat microglia. J Neuroimmunol. 2008;205(1–2):32–36. doi: 10.1016/j.jneuroim.2008.08.006
  • Guo B, Chen C, Yang L, et al. Effects of dexmedetomidine on postoperative cognitive function of sleep deprivation rats based on changes in inflammatory response. Bioengineered. 2021;12(1):7920–7928. doi: 10.1080/21655979.2021.1981757
  • Kullmann S, Abbas Z, Machann J, et al. Investigating obesity-associated brain inflammation using quantitative water content mapping. J Neuroendocrinology. 2020;32(12):e12907. doi: 10.1111/jne.12907
  • Sun X, Liu B. Donepezil ameliorates oxygen-glucose deprivation/reoxygenation-induced brain microvascular endothelial cell dysfunction via the SIRT1/FOXO3a/NF-κB pathways. Bioengineered. 2022;13(3):7760–7770. doi: 10.1080/21655979.2022.2045833
  • Savran M, Aslankoc R, Ozmen O, et al. Agomelatine could prevent brain and cerebellum injury against LPS-induced neuroinflammation in rats. Cytokine. 2020;127:154957. doi: 10.1016/j.cyto.2019.154957
  • Zhao Q, Tian Z, Zhou G, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics. 2020;10(11):4822–4838. doi: 10.7150/thno.42387
  • Zhang XS, Lu Y, Li W, et al. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol. 2021;178(5):1114–1132. doi: 10.1111/bph.15346
  • Egea J, Romero A, Parada E, et al. Neuroprotective effect of dimebon against ischemic neuronal damage. Neuroscience. 2014;267:11–21. doi: 10.1016/j.neuroscience.2014.02.025
  • Li T, Xu T, Zhao J, et al. Depletion of iNOS-positive inflammatory cells decelerates neuronal degeneration and alleviates cerebral ischemic damage by suppressing the inflammatory response. Free Radic Biol Med. 2022;181:209–220. doi: 10.1016/j.freeradbiomed.2022.02.008
  • Zha H, Miao W, Rong W, et al. Remote ischaemic perconditioning reduces the infarct volume and improves the neurological function of acute ischaemic stroke partially through the miR-153-5p/TLR4/p65/IkBa signalling pathway. Folia Neuropathol. 2021;59(4):335–349. doi: 10.5114/fn.2021.112127
  • Kim DK, Kweon KJ, Kim P, et al. Ginsenoside Rg3 improves recovery from spinal cord injury in rats via suppression of neuronal apoptosis, pro-inflammatory mediators, and microglial activation. Molecules (Basel, Switzerland); 2017. p. 22.
  • Zeng H, Liu N, Yang YY, et al. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflammation. 2019;16(1):283. doi: 10.1186/s12974-019-1658-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.