48
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives

, , , , , , , & show all
Pages 722-746 | Received 02 May 2023, Accepted 25 Nov 2023, Published online: 12 Jun 2024

References

  • Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40. doi: 10.1038/35065000
  • Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294(5545):1299–1304. doi: 10.1126/science.1062023
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–877. doi: 10.1016/j.cell.2007.05.018
  • Dower NA, Stang SL, Bottorff DA, et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol. 2000;1(4):317–321. doi: 10.1038/79766
  • Ebinu JO, Stang SL, Teixeira C, et al. RasGRP links T-cell receptor signaling to Ras. Blood. 2000;95(10):3199–3203. doi: 10.1182/blood.V95.10.3199
  • Kortum RL, Sommers CL, Alexander CP, et al. Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci USA. 2011;108(30):12407–12412. doi: 10.1073/pnas.1104295108
  • Sacco E, Fantinato S, Manzoni R, et al. The isolated catalytic hairpin of the Ras-specific guanine nucleotide exchange factor Cdc25Mm retains nucleotide dissociation activity but has impaired nucleotide exchange activity. FEBS Lett. 2005;579(30):6851–6858. doi: 10.1016/j.febslet.2005.11.024
  • Vanoni M, Bertini R, Sacco E, et al. Characterization and properties of dominant-negative mutants of the ras-specific guanine nucleotide exchange factor CDC25(Mm). J Biol Chem. 1999;274(51):36656–36662. doi: 10.1074/jbc.274.51.36656
  • Ebinu JO, Bottorff DA, Chan EYW, et al. RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science. 1998;280(5366):1082–1086. doi: 10.1126/science.280.5366.1082
  • Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol. 2006;359(3):509–525. doi: 10.1016/j.jmb.2006.03.066
  • Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J. 2007;405(2):199–221. doi: 10.1042/BJ20070255
  • Lorenzo PS, Beheshti M, Pettit GR, et al. The guanine nucleotide exchange factor RasGRP is a high -affinity target for diacylglycerol and phorbol esters. Mol Pharmacol. 2000;57(5):840–846.
  • Beaulieu N, Zahedi B, Goulding RE, et al. Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane. Mol Biol Cell. 2007;18(8):3156–3168. doi: 10.1091/mbc.e06-10-0932
  • Zahedi B, Goo HJ, Beaulieu N, et al. Phosphoinositide 3-kinase regulates plasma membrane targeting of the Ras-specific exchange factor RasGRP1. J Biol Chem. 2011;286(14):12712–12723. doi: 10.1074/jbc.M110.189605
  • Iwig JS, Vercoulen Y, Das R, et al. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Elife. 2013;2:e00813. doi: 10.7554/eLife.00813
  • Fuller DM, Zhu M, Song X, et al. Regulation of RasGRP1 function in T cell development and activation by its unique tail domain.PloS one 2012;7(6):e38796. doi: 10.1371/journal.pone.0038796
  • Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev. 2009;232(1):72–83. doi: 10.1111/j.1600-065X.2009.00828.x
  • Tognon CE, Kirk HE, Passmore LA, et al. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol. 1998;18(12):6995–7008. doi: 10.1128/MCB.18.12.6995
  • Bivona TG, Perez De Castro I, Ahearn IM, et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature. 2003;424(6949):694–698. doi: 10.1038/nature01806
  • Perez de Castro I, Bivona TG, Philips MR, et al. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the golgi apparatus. Mol Cell Biol. 2004;24(8):3485–3496. doi: 10.1128/MCB.24.8.3485-3496.2004
  • Caloca MJ, Zugaza JL, Bustelo XR. Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J Biol Chem. 2003;278(35):33465–33473. doi: 10.1074/jbc.M302807200
  • Carrasco S, Merida I. Diacylglycerol-dependent binding recruits PKCtheta and RasGRP1 C1 domains to specific subcellular localizations in living T lymphocytes. Mol Biol Cell. 2004;15(6):2932–2942. doi: 10.1091/mbc.e03-11-0844
  • Riese MJ, Moon EK, Johnson BD, et al. Diacylglycerol Kinases (DGKs): novel targets for improving T cell activity in cancer. Front Cell Dev Biol. 2016;4:108. doi: 10.3389/fcell.2016.00108
  • Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal. 2022;15(729):eabo0264. doi: 10.1126/scisignal.abo0264
  • Sanjuan MA, Pradet-Balade B, Jones DR, et al. T cell activation in vivo targets diacylglycerol kinase alpha to the membrane: a novel mechanism for Ras attenuation. J Immunol. 2003;170(6):2877–2883. doi: 10.4049/jimmunol.170.6.2877
  • Jones DR, Sanjuan MA, Stone JC, et al. Expression of a catalytically inactive form of diacylglycerol kinase alpha induces sustained signaling through RasGRP. FASEB J. 2002;16(6):595–597. doi: 10.1096/fj.01-0762fje
  • Zha Y, Marks R, Ho AW, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7(11):1166–1173. doi: 10.1038/ni1394
  • Zhong XP, Hainey EA, Olenchock BA, et al. Regulation of T cell receptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase zeta. J Biol Chem. 2002;277(34):31089–31098. doi: 10.1074/jbc.M203818200
  • Topham MK, Prescott SM. Diacylglycerol Kinase ζ regulates ras activation by a novel mechanism. J Cell Bio. 2001;152(6):1135–1144. doi: 10.1083/jcb.152.6.1135
  • Luo B, Prescott SM, Topham MK. Association of diacylglycerol kinase zeta with protein kinase C alpha: spatial regulation of diacylglycerol signaling. J Cell Bio. 2003;160(6):929–937. doi: 10.1083/jcb.200208120
  • Roose JP, Mollenauer M, Gupta VA, et al. A diacylglycerol-protein kinase C-RasGRP1 pathway directs ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol. 2005;25(11):4426–4441. doi: 10.1128/MCB.25.11.4426-4441.2005
  • Zheng Y, Liu H, Coughlin J, et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood. 2005;105(9):3648–3654. doi: 10.1182/blood-2004-10-3916
  • Zhang X, Liu Y, Yang R, et al. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem. 2023. doi: 10.1007/s11010-023-04839-4
  • Vercoulen Y, Kondo Y, Iwig JS, et al. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife. 2017;6:e29002. doi: 10.7554/eLife.29002
  • Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7(4):281–294. doi: 10.1038/nrc2110
  • Ding H, Peterson KL, Correia C, et al. Histone deacetylase inhibitors interrupt HSP90*RASGRP1 and HSP90*CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells. Leukemia. 2017;31(7):1593–1602. doi: 10.1038/leu.2016.357
  • Wasik U, Kempinska-Podhorodecka A, Bogdanos DP, et al. Enhanced expression of miR-21 and miR-150 is a feature of anti-mitochondrial antibody-negative primary biliary cholangitis. Mol Med. 2020;26(1):8. doi: 10.1186/s10020-019-0130-1
  • Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immun Balt. 2010;184(12):6773–6781. doi: 10.4049/jimmunol.0904060
  • Wang C, Li X, Xue B, et al. RasGRP1 promotes the acute inflammatory response and restricts inflammation-associated cancer cell growth. Nat Commun. 2022;13(1):7001. doi: 10.1038/s41467-022-34659-x
  • Baars MJD, Douma T, Simeonov DR, et al. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. Eur J Immunol. 2021;51(2):471–482. doi: 10.1002/eji.201948451
  • Kortum RL, Sommers CL, Pinski JM, et al. Deconstructing Ras signaling in the thymus. Mol Cell Biol. 2012;32(14):2748–2759. doi: 10.1128/MCB.00317-12
  • Klein L, Hinterberger M, Wirnsberger G, et al. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9(12):833–844. doi: 10.1038/nri2669
  • Daniels MA, Teixeiro E, Gill J, et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature. 2006;444(7120):724–729. doi: 10.1038/nature05269
  • Prasad A, Zikherman J, Das J, et al. Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc Natl Acad Sci USA. 2009;106(2):528–533. doi: 10.1073/pnas.0805981105
  • Priatel JJ, Teh SJ, Dower NA, et al. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity. 2002;17(5):617–627. doi: 10.1016/S1074-7613(02)00451-X
  • Das J, Ho M, Zikherman J, et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell. 2009;136(2):337–351. doi: 10.1016/j.cell.2008.11.051
  • Salzer E, Cagdas D, Hons M, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17(12):1352–1360. doi: 10.1038/ni.3575
  • Coughlin JJ, Stang SL, Dower NA, et al. The role of RasGRPs in regulation of lymphocyte proliferation. Immunol Lett. 2006;105(1):77–82. doi: 10.1016/j.imlet.2006.01.005
  • Chang Y, Manivannan P, Doosti A, et al. Cutting edge: induced loss of rasgrp1 in peripheral CD4+ T cells of conditional rasgrp1-deficient mice reveals an essential role for Rasgrp1 in TCR/CD28-induced Ras-MAPK signaling. J Immunol. 2023;211(6):917–922. doi: 10.4049/jimmunol.2300138
  • Coughlin JJ, Stang SL, Dower NA, et al. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol. 2005;175(11):7179–7184. doi: 10.4049/jimmunol.175.11.7179
  • Guo B, Rothstein TL. RasGRP1 is an essential signaling molecule for development of B1a cells with autoantigen receptors. J Immunol. 2016;196(6):2583–2590. doi: 10.4049/jimmunol.1502132
  • Boes M, Prodeus AP, Schmidt T, et al. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med. 1998;188(12):2381–2386. doi: 10.1084/jem.188.12.2381
  • Aziz M, Holodick NE, Rothstein TL, et al. The role of B-1 cells in inflammation. Immunol Res. 2015;63(1–3):153–166. doi: 10.1007/s12026-015-8708-3
  • Aziz M, Holodick NE, Rothstein TL, et al. B-1a cells protect mice from sepsis: critical role of CREB. J Immunol. 2017;199(2):750–760. doi: 10.4049/jimmunol.1602056
  • Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601. doi: 10.1126/science.1215173
  • Chousterman BG, Swirski FK. Innate response activator B cells: origins and functions. Int Immunol. 2015;27(10):537–541. doi: 10.1093/intimm/dxv028
  • Guo B, Ludlow AV, Brightwell AS, et al. Impairment of PD-L2 positive B1a cells enhances susceptibility to sepsis in RasGRP1-deficient mice. Cell Immunol. 2019;346:103993. doi: 10.1016/j.cellimm.2019.103993
  • Oh-Hora M, Johmura S, Hashimoto A, et al. Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med. 2003;198(12):1841–1851. doi: 10.1084/jem.20031547
  • Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34(3):308–312. doi: 10.1038/ng1170
  • Seymour JF, Lieschke GJ, Grail D, et al. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood. 1997;90(8):3037–3049. doi: 10.1182/blood.V90.8.3037
  • de la Luz Sierra M, Sakakibara S, Gasperini P, et al. The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the ras activator RasGRP1. Blood. 2010;115(19):3970–3979. doi: 10.1182/blood-2009-10-246967
  • Liu Y, Zhu M, Nishida K, et al. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J Exp Med. 2007;204(1):93–103. doi: 10.1084/jem.20061598
  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306(5701):1517–1519. doi: 10.1126/science.1103478
  • Lee SH, Yun S, Lee J, et al. RasGRP1 is required for human NK cell function. J Immunol. 2009;183(12):7931–7938. doi: 10.4049/jimmunol.0902012
  • Bottorff D, Ebinu J, Stone JC. RasGRP, a ras activator: mouse and human cDNA sequences and chromosomal positions. Mamm Genome. 1999;10(4):358–361. doi: 10.1007/s003359901001
  • Platt CD, Fried AJ, Hoyos-Bachiloglu R, et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol. 2017;183:142–144. doi: 10.1016/j.clim.2017.08.007
  • Mao H, Yang W, Latour S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol. 2018;142(2):595–604.e16. doi: 10.1016/j.jaci.2017.10.026
  • Winter S, Martin E, Boutboul D, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med. 2018;10(2):188–199. doi: 10.15252/emmm.201708292
  • Izawa K, Martin E, Soudais C, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214(1):73–89. doi: 10.1084/jem.20160784
  • Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021;22(1):10–18. doi: 10.1038/s41590-020-00816-x
  • Ruiz-Larranaga O, Uribarri M, Alcaro MC, et al. Genetic variants associated with rheumatoid arthritis patients and serotypes in European populations. Clin Exp Rheumatol. 2016;34(2):236–241.
  • Golinski ML, Vandhuick T, Derambure C, et al. Dysregulation of RasGRP1 in rheumatoid arthritis and modulation of RasGRP3 as a biomarker of TNFα inhibitors. Arthritis Res Ther. 2015;17(1):382. doi: 10.1186/s13075-015-0894-9
  • Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922. doi: 10.3390/ijms222010922
  • Bartlett A, Buhlmann JE, Stone J, et al. Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice. J ImmunolJournal Of Immunology (Baltimore. 2013;191(7):3605–3613. doi: 10.4049/jimmunol.1202892
  • Daley SR, Coakley KM, Hu DY, et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios(+) T cells and autoantibodies. Elife. 2013;2:e01020. doi: 10.7554/eLife.01020
  • Sharma A, Fonseca LL, Rajani C, et al. Targeted deletion of RasGRP1 impairs skin tumorigenesis. Carcinogenesis. 2014;35(5):1084–1091. doi: 10.1093/carcin/bgu016
  • Yasuda S, Stevens RL, Terada T, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol. 2007;179(7):4890–4900. doi: 10.4049/jimmunol.179.7.4890
  • Sun C, Molineros JE, Looger LL, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet. 2016;48(3):323–330. doi: 10.1038/ng.3496
  • Kono M, Kurita T, Yasuda S, et al. Decreased expression of Serine/Arginine-rich splicing factor 1 in T cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA methyltransferase 1. Arthritis Rheumatol (Hoboken, NJ). 2018;70(12):2046–2056. doi: 10.1002/art.40585
  • Sun C, Molineros JE, Looger LL, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nature Genet. 2016;48(3):323–330. doi: 10.1038/ng.3496
  • Molineros JE, Singh B, Terao C, et al. Mechanistic characterization of RASGRP1 variants identifies an hnRNP-K-Regulated transcriptional enhancer contributing to SLE susceptibility. Front Immunol. 2019;10:1066. doi: 10.3389/fimmu.2019.01066
  • Zhou XJ, Nath SK, Qi YY, et al. Novel identified associations of RGS1 and RASGRP1 variants in IgA nephropathy. Sci Rep. 2016;6(1):35781. doi: 10.1038/srep35781
  • Brcic L, Baric A, Gracan S, et al. Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto’s thyroiditis. Autoimmunity. 2016;49(7):480–485. doi: 10.1080/08916934.2016.1191475
  • Pierret P, Dunn RJ, Djordjevic B, et al. Distribution of ras guanyl releasing protein (RasGRP) mRNA in the adult rat central nervous system. J Neurocytol. 2000;29(7):485–497. doi: 10.1023/A:1007245728751
  • Birkmayer W, Hornykiewicz O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord. 1998;4(2):59–60. doi: 10.1016/S1353-8020(98)00013-3
  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967;276(7):374–379. doi: 10.1056/NEJM196702162760703
  • Mercuri NB, Bernardi G. The ‘magic’ of -dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci. 2005;26(7):341–344. doi: 10.1016/j.tips.2005.05.002
  • Fabbrini G, Brotchie JM, Grandas F, et al. Levodopa-induced dyskinesias. Mov Disord. 2007;22(10):1379–1389. doi: 10.1002/mds.21475
  • Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends In Neurosciences. 2000;23(10):S2–7. doi: 10.1016/S1471-1931(00)00031-8
  • Konradi C, Westin JE, Carta M, et al. Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis. 2004;17(2):219–236. doi: 10.1016/j.nbd.2004.07.005
  • Crittenden JR, Cantuti-Castelvetri I, Saka E, et al. Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proc Natl Acad Sci USA. 2009;106(8):2892–2896. doi: 10.1073/pnas.0812822106
  • Eshraghi M, Ramirez-Jarquin UN, Shahani N, et al. RasGRP1 is a causal factor in the development of l -DOPA–induced dyskinesia in Parkinson’s disease. Sci Adv. 2020;6(18):eaaz7001. doi: 10.1126/sciadv.aaz7001
  • Freedman R, Wood AJJ. Schizophrenia. N Engl J Med. 2003;349(18):1738–1749. doi: 10.1056/NEJMra035458
  • Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–193. doi: 10.1038/nature09552
  • Zamanpoor M, Ghaedi H, Omrani MD. The genetic basis for the inverse relationship between rheumatoid arthritis and schizophrenia. Mol Genet Genomic Med. 2020;8(11):e1483. doi: 10.1002/mgg3.1483
  • Radulescu E, Jaffe AE, Straub RE, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry. 2020;25(4):791–804. doi: 10.1038/s41380-018-0304-1
  • de Rosa A, Di Maio A, Torretta S, et al. Abnormal RasGRP1 expression in the post-mortem brain and blood serum of schizophrenia patients. Biomolecules. 2022;12(2):328. doi: 10.3390/biom12020328
  • Liu W, Gao Y, Chang N. Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson’s disease models. Biochem Biophys Res Commun. 2017;482(4):1312–1319. doi: 10.1016/j.bbrc.2016.12.034
  • Gao H, Wang D, Jiang S, et al. NFkappaB is negatively associated with Nurr1 to reduce the inflammatory response in Parkinson’s disease. Mol Med Rep. 2021;23(6):396. doi: 10.3892/mmr.2021.12035
  • Oh M, Kim SY, Gil JE, et al. Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Sci Rep. 2020;10(1):10755. doi: 10.1038/s41598-020-67549-7
  • Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. nature reviews. Molecular cell biology. Nat Rev Mol Cell Biol. 2018;19(10):654–672. doi: 10.1038/s41580-018-0044-8
  • Zhao L, Zhang F, Ding X. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–1156. doi: 10.1126/science.aao5774
  • Rorsman P, Ashcroft FM. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018;98(1):117–214. doi: 10.1152/physrev.00008.2017
  • Kutlu B, Burdick D, Baxter D, et al. Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genomics. 2009;2(1):3. doi: 10.1186/1755-8794-2-3
  • Shmueli O, Horn-Saban S, Chalifa-Caspi V, et al. GeneNote: whole genome expression profiles in normal human tissues. C R Biol. 2003;326(10–11):1067–1072. doi: 10.1016/j.crvi.2003.09.012
  • Marselli L, Thorne J, Dahiya S, et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PloS one2010;5(7):e11499doi: 10.1371/journal.pone.0011499
  • Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 2012;16(1):122–134. doi: 10.1016/j.cmet.2012.06.006
  • Qu HQ, Grant SF, Bradfield JP, et al. Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet. 2009;46(8):553–554. doi: 10.1136/jmg.2009.067140
  • Plagnol V, Howson JMM, Smyth DJ, et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PloS Genet. 2011;7(8):e1002216. doi: 10.1371/journal.pgen.1002216
  • Li H, Gan W, Lu L, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes. 2013;62(1):291–298. doi: 10.2337/db12-0454
  • Li JY, Tao F, Wu XX, et al. Common RASGRP1 gene variants that confer risk of type 2 diabetes. Genet Test Mol Biomarkers. 2015;19(8):439–443. doi: 10.1089/gtmb.2015.0005
  • Horinouchi M, Yagi M, Imanishi H, et al. Association of genetic polymorphisms with hepatotoxicity in patients with childhood acute lymphoblastic leukemia or lymphoma. Pediatric hematology and oncology. Pediatr Hematol Oncol. 2010;27(5):344–354. doi: 10.3109/08880011003739422
  • Brooks-Worrell B, Palmer JP. Immunology in the clinic review series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation. Clin Exp Immunol. 2012-2011;167(1):40–46. doi: 10.1111/j.1365-2249.2011.04501.x
  • Donath MY, Boni-Schnetzler M, Ellingsgaard H, et al. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology (Bethesda). 2009;24(6):325–331. doi: 10.1152/physiol.00032.2009
  • Trouve P, Genin E, Ferec C, et al. In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis.PloS one 2017;12(3):e0173822doi: 10.1371/journal.pone.0173822
  • Kashima Y, Shibasaki T, Seino S. Regulation of insulin secretion by incretins. Nihon Rinsho Japanese Journal Of Clinical Medicine. 2002;60 Suppl 10 (10):646–650.
  • Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2(11):805–811. doi: 10.1038/35041046
  • Keiper M, Stope MB, Szatkowski D, et al. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by gs-coupled receptors. J Biol Chem. 2004;279(45):46497–46508. doi: 10.1074/jbc.M403604200
  • Xu J, Liu M, Yu M, et al. RasGRP1 is a target for VEGF to induce angiogenesis and involved in the endothelial-protective effects of metformin under high glucose in HUVECs. IUBMB Life. 2019;71(9):1391–1400. doi: 10.1002/iub.2072
  • Oki T, Kitaura J, Watanabe-Okochi N, et al. Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia. 2012;26(5):1038–1045. doi: 10.1038/leu.2011.328
  • Hartzell C, Ksionda O, Lemmens E, et al. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal. 2013;6(268):ra21. doi: 10.1126/scisignal.2003848
  • Klinger MB, Guilbault B, Goulding RE, et al. Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene. 2005;24(16):2695–2704. doi: 10.1038/sj.onc.1208334
  • Ksionda O, Melton AA, Bache J, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35(28):3658–3668. doi: 10.1038/onc.2015.431
  • Guo R, Wan CK, Carpenter JH, et al. Synergistic control of T cell development and tumor suppression by diacylglycerol kinase α and ζ. Proc Natl Acad Sci USA. 2008;105(33):11909–11914. doi: 10.1073/pnas.0711856105
  • Wen Z, Yun G, Hebert A, et al. Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood. 2021;137(23):3259–3271. doi: 10.1182/blood.2020009082
  • Tian XP, Cai J, Ma SY, et al. BRD2 induces drug resistance through activation of the RasGRP1/Ras/ERK signaling pathway in adult T-cell lymphoblastic lymphoma. Cancer Communications. 2020;40(6):245–259. doi: 10.1002/cac2.12039
  • Stone JC, Stang SL, Zheng Y, et al. Synthetic bryostatin analogues activate the RasGRP1 signaling pathway. J Med Chem. 2004;47(26):6638–6644. doi: 10.1021/jm0495069
  • Stang SL, Lopez-Campistrous A, Song X, et al. A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp Hematol. 2009;37(1):122–134. doi: 10.1016/j.exphem.2008.09.008
  • Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–1480. doi: 10.1016/S0140-6736(19)32319-0
  • di Fiore F, Sesboue R, Michel P, et al. Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br J Cancer. 2010;103(12):1765–1772. doi: 10.1038/sj.bjc.6606008
  • Aliaga JC, Deschenes C, Beaulieu JF, et al. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol. 1999;277(3):G631–41. doi: 10.1152/ajpgi.1999.277.3.G631
  • Wong VW, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol. 2012;14(4):401–408. doi: 10.1038/ncb2464
  • Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10(12):842–857. doi: 10.1038/nrc2960
  • Depeille P, Henricks LM, van de Ven RA, et al. RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol. 2015;17(6):804–815. doi: 10.1038/ncb3175
  • Depeille P, Warren RS, Roose JP. Unexpected insights for anti-EGFR cancer therapy. Oncotarget. 2015;6(22):18746–18747. doi: 10.18632/oncotarget.5115
  • Depeille P, Roose JP. Flavors of EGFR-Ras signals impacting intestinal homeostasis. Cell Cycle. 2015;14(20):3205–3206. doi: 10.1080/15384101.2015.1084203
  • Gbenedio OM, Bonnans C, Grun D, et al. RasGRP1 is a potential biomarker for stratifying anti-EGFR therapy response in colorectal cancer. JCI Insight. 2019;4(15):e127552. doi: 10.1172/jci.insight.127552
  • Hatch AJ, Sibley AB, Starr MD, et al. Alliance for clinical trials in, O. blood-based markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from CALGB 80203 (alliance). Cancer Med. 2016;5(9):2249–2260. doi: 10.1002/cam4.806
  • Normanno N, Tejpar S, Morgillo F, et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol. 2009;6(9):519–527. doi: 10.1038/nrclinonc.2009.111
  • Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493–507. doi: 10.1038/nrclinonc.2010.97
  • Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer. 2001;85(5):692–696. doi: 10.1054/bjoc.2001.1964
  • Diaz Jr LA Jr., Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–540. doi: 10.1038/nature11219
  • Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–536. doi: 10.1038/nature11156
  • Cicenas J, Tamosaitis L, Kvederaviciute K, et al., KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med Oncol. 2017;34(2):26. doi: 10.1007/s12032-016-0879-9
  • Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi: 10.1038/s41572-019-0111-2
  • Wang JJ, Huang YQ, Song W, et al. Comprehensive analysis of the lncRNA‑associated competing endogenous RNA network in breast cancer. Oncol Rep. 2019;42(6):2572–2582. doi: 10.3892/or.2019.7374
  • Wang S, Beeghly-Fadiel A, Cai Q, et al. Gene expression in triple-negative breast cancer in relation to survival. Breast Cancer Res Treat. 2018;171(1):199–207. doi: 10.1007/s10549-018-4816-9
  • Chou CW, Huang YM, Chang YJ, et al. Identified the novel resistant biomarkers for taxane-based therapy for triple-negative breast cancer. Int J Med Sci. 2021;18(12):2521–2531. doi: 10.7150/ijms.59177
  • Shen Y, Zhang W, Liu J, et al. Therapeutic activity of DCC-2036, a novel tyrosine kinase inhibitor, against triple-negative breast cancer patient-derived xenografts by targeting AXL/MET. Int J Cancer. 2019;144(3):651–664. doi: 10.1002/ijc.31915
  • Kassam F, Enright K, Dent R, et al. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer. 2009;9(1):29–33. doi: 10.3816/CBC.2009.n.005
  • Yang XL, Liu KY, Lin FJ, et al. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis. Oncol Rep. 2017;38(3):1393–1401. doi: 10.3892/or.2017.5798
  • Kono M, Fujii T, Lim B, et al. Androgen receptor function and androgen receptor–targeted therapies in breast cancer. JAMA Oncol. 2017;3(9):1266–1273. doi: 10.1001/jamaoncol.2016.4975
  • Katayama K, Yoshioka S, Tsukahara S, et al. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther. 2007;6(7):2092–2102. doi: 10.1158/1535-7163.MCT-07-0148
  • Jia Y, Zhou J, Luo X, et al. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway and predicts good prognosis in breast cancer. Cell Signal. 2018;42:165–175. doi: 10.1016/j.cellsig.2017.09.025
  • Serini S, Calviello G. Modulation of Ras/ERK and phosphoinositide signaling by long-chain n-3 PUFA in breast cancer and their potential complementary role in combination with targeted drugs. Nutrients. 2017;9(3):3. doi: 10.3390/nu9030185
  • Wright KL, Adams JR, Liu JC, et al. Ras signaling is a key determinant for metastatic dissemination and poor survival of luminal breast cancer patients. Cancer Res. 2015;75(22):4960–4972. doi: 10.1158/0008-5472.CAN-14-2992
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107
  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–1255. doi: 10.1016/S0140-6736(11)61347-0
  • Welzel TM, Graubard BI, Zeuzem S, et al. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology. 2011;54(2):463–471. doi: 10.1002/hep.24397
  • Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48(6):2047–2063. doi: 10.1002/hep.22580
  • Marra M, Sordelli IM, Lombardi A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9(1):171. doi: 10.1186/1479-5876-9-171
  • Danese E, Montagnana M, Minicozzi AM, et al. The role of resistin in colorectal cancer. Clin Chim Acta. 2012;413(7–8):760–764. doi: 10.1016/j.cca.2012.01.019
  • Caraglia M, Giuberti G, Marra M, et al. Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR. Cell Death Dis. 2011;2(4):e150. doi: 10.1038/cddis.2011.34
  • Zhang X, Zhuang H, Han F, et al. Sp1-regulated transcription of RasGRP1 promotes hepatocellular carcinoma (HCC) proliferation. Liver Int. 2018;38(11):2006–2017. doi: 10.1111/liv.13757
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–774. doi: 10.1038/nrc3106
  • Rambaratsingh RA, Stone JC, Blumberg PM, et al. RasGRP1 represents a novel non-protein kinase C phorbol ester signaling pathway in mouse epidermal keratinocytes. J Biol Chem. 2003;278(52):52792–52801. doi: 10.1074/jbc.M308240200
  • Oki-Idouchi CE, Lorenzo PS. Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. Cancer Res. 2007;67(1):276–280. doi: 10.1158/0008-5472.CAN-06-3080
  • Diez FR, Garrido AA, Sharma A, et al. RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. Am J Pathol. 2009;175(1):392–399. doi: 10.2353/ajpath.2009.090036
  • Luke CT, Oki-Idouchi CE, Cline JM, et al. RasGRP1 overexpression in the epidermis of transgenic mice contributes to tumor progression during multistage skin carcinogenesis. Cancer Res. 2007;67(21):10190–10197. doi: 10.1158/0008-5472.CAN-07-2375
  • Fonseca LL, Yang WS, Geerts D, et al. RasGRP1 induces autophagy and transformation-associated changes in primary human keratinocytes. Transl Oncol. 2021;14(1):100880. doi: 10.1016/j.tranon.2020.100880

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.