1,022
Views
42
CrossRef citations to date
0
Altmetric
Articles

Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study

, &
Pages 201-208 | Received 28 Oct 2019, Accepted 27 Jan 2020, Published online: 03 Mar 2020

References

  • Ahmed MM, Abdel-Aty MA. 2012. The viability of using automatic vehicle identification data for real-time crash prediction. IEEE Trans Intell Transport Syst. 13(2):459–468. doi:10.1109/TITS.2011.2171052
  • Abdel-Aty MA, Pemmanaboina R. 2006. Calibrating a real-time traffic crash-prediction model using archived weather and ITS traffic data. IEEE Transactions on Intelligent Transportation Systems 7(2):167–74. doi:10.1109/TITS.2006.874710
  • Aljanahi AAM, Rhodes AH, Metcalfe AV. 1999. Speed, speed limits and road traffic accidents under free flow conditions. Accid Anal Prev. 31(1–2):161–68. doi:10.1016/S0001-4575(98)00058-X
  • Ba Y, Zhang W, Chan AHS, Zhang T, Cheng ASK. 2016. How drivers fail to avoid crashes: A Risk-Homeostasis/Perception-Response (RH/PR) framework evidenced by visual perception, electrodermal activity and behavioral responses. Transport Res Part F: Traffic Psychol Behav. 43:24–35. doi:10.1016/j.trf.2016.09.025
  • Backs RW, Lenneman JK, Wetzel JM, Green P. 2003. Cardiac measures of driver workload during simulated driving with and without visual occlusion. Human Factors. 45(4):525–38. doi:10.1518/hfes.45.4.525.27089
  • Basso F, Basso LJ, Bravo F, Pezoa R. 2018. Real-time crash prediction in an urban expressway using disaggregated data. Transp Res Part C: Emerg Technol. 86:202–19. doi:10.1016/j.trc.2017.11.014
  • Basu S, Mukhopadhyay S, Karki M, DiBiano R, Ganguly S, Nemani R, Gayaka S. 2018. Deep neural networks for texture classification—A theoretical analysis. Neural Networks. 97:173–82. doi:10.1016/j.neunet.2017.10.001
  • Basheer IA, Hajmeer M. 2000. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 43(1): 3–31. doi:10.1016/S0167-7012(00)00201-3
  • Basu S, Mukhopadhyay S, Karki M, DiBiano R, Ganguly S, Nemani R, Gayaka S. 2018. Deep neural networks for texture classification—A theoretical analysis. Neural Networks. 97:173–82. doi:10.1016/j.neunet.2017.10.001
  • Batuwita R, Palade V. 2013. Class imbalance learning methods for support vector machines. In: Imbalanced Learning. Hoboken, NJ: John Wiley & Sons, Inc. p. 83–99.
  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research. 16:321–57. doi:10.1613/jair.953
  • Chen L-l, Zhao Y, Ye P-f, Zhang J, Zou J-z. 2017. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst Appl. 85:279–291. doi:10.1016/j.eswa.2017.01.040
  • Davoudi Kakhki F, Freeman SA, Mosher GA. 2019. Evaluating machine learning performance in predicting injury severity in agribusiness industries. Safety Science. 117: 257–62. doi:10.1016/j.ssci.2019.04.026
  • Elamrani Abou Elassad Z, Mousannif H. 2019. Understanding driving behavior: Measurement, modeling and analysis. In: Advances in Intelligent Systems and Computing. Vol. 5; p. 452–464. doi:10.1007/978-3-030-11928-7_41
  • Elamrani Abou Elassad Z, Mousannif H, Al H, Karkouch A. 2020. Engineering applications of artificial intelligence the application of machine learning techniques for driving behavior analysis: A conceptual framework and a systematic literature review. Eng Appl Artificial Intell. 87(March 2019):103312. doi:10.1016/j.engappai.2019.103312
  • Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G. 2017. Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications. 73:220–39. doi:10.1016/j.eswa.2016.12.035
  • Henni K, Mezghani N, Gouin-Vallerand C, Ruer P, Ouakrim Y, Vallières E. 2018. Feature selection for driving fatigue characterization and detection using visual- and signal-based sensors. Applied Informatics. 5(1):1–15. doi:10.1186/s40535-018-0054-9
  • Hsu CW, Chang CC, Lin CJ. 2003. A practical guide to support vector classification. http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf
  • Jha V, Prakash N, Sagar S. 2018. Wearable anger-monitoring system. ICT Express. 4(4):194–98. doi:10.1016/j.icte.2017.07.002
  • Kan HJ, Kharrazi H, Chang H-Y, Bodycombe D, Lemke K, Weiner JP. 2019. Exploring the use of machine learning for risk adjustment: A comparison of standard and penalized linear regression models in predicting health care costs in older adults. PLOS ONE 14(3): e0213258. doi:10.1371/journal.pone.0213258
  • Kaur P, Gosain A. 2018. Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise. Singapore: Springer, p. 23–30.
  • Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. 1137–1143 [accessed 2019 Jul 9]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.529.
  • Lee D, Derrible S, Pereira F C. 2018. Comparison of four types of artificial neural network and a multinomial logit model for travel mode choice modeling. Transport Res Record. 2672(49):101–112. doi:10.1177/0361198118796971
  • Li L, He S, Zhang J, Ran B. 2016. Short-term highway traffic flow prediction based on a hybrid strategy considering temporal-spatial information. J Adv Transp. 50(8):2029–40. doi:10.1002/atr.1443
  • Li Y, Ma D, Zhu M, Zeng Z, Wang Y. 2018. Identification of significant factors in fatal-injury highway crashes using genetic algorithm and neural network. Accid Anal Prev. 111:354–63. doi:10.1016/j.aap.2017.11.028
  • Li X, Lord D, Zhang Y, Xie Y. 2008. Predicting motor vehicle crashes using support vector machine models. Accid Anal Prev. 40(4):1611–18. doi:10.1016/j.aap.2008.04.010
  • Madanat S, Liu P-C. 1995. A prototype system for real-time incident likelihood prediction. ITS-IDEA Program Project Final Report [accessed 2019 Jul 26]. https://trid.trb.org/view/465172.
  • McDonald AD, Lee JD, Schwarz C, Brown TL. 2018. A contextual and temporal algorithm for driver drowsiness detection. Acc Anal Prevent. 113(January):25–37. doi:10.1016/j.aap.2018.01.005
  • Michaels J, Chaumillon R, Nguyen-Tri D, Watanabe D, Hirsch P, Bellavance F, Giraudet G, Bernardin D, Faubert J. 2017. Driving simulator scenarios and measures to faithfully evaluate risky driving behavior: A comparative study of different driver age groups” ed. Jun Xu. Plos One. 12(10):e0185909. doi:10.1371/journal.pone.0185909
  • Mousannif H, Sabah H, Douiji Y, Sayad Y O. 2016. Big data projects: Just jump right in!. Int J Pervasive Comp & Comm. 12(2):260–288. doi:10.1108/IJPCC-04-2016-0023
  • Nguyen HM, Cooper EW, Kamei K. 2011. Borderline over-sampling for imbalanced data classification. International Journal of Knowledge Engineering and Soft Data Paradigms 3(1): 4. doi:10.1504/IJKESDP.2011.039875
  • Perez MA, Sudweeks JD, Sears E, Antin J, Lee S, Hankey JM, Dingus TA. 2017. Performance of basic kinematic thresholds in the identification of crash and near-crash events within naturalistic driving data. Accid Anal Prev. 103:10–19. doi:10.1016/j.aap.2017.03.005
  • Ragab A, Craye C, Kamel MS, Fakhri K. 2014. A visual-based driver distraction recognition and detection using random forest. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8814:256–265.
  • Siddiqui C, Abdel-Aty M, Huang H. 2012. Aggregate nonparametric safety analysis of traffic zones. Accid Anal Prev. 45:317–25. doi:10.1016/j.aap.2011.07.019
  • Shi X, Wong YD, Li MZF, Chai C. 2018. Key risk indicators for accident assessment conditioned on pre-crash vehicle trajectory. Accid Anal Prev. 117:346–56. doi:10.1016/j.aap.2018.05.007
  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 15: 1929–58.
  • Theofilatos A, Chen C, Antoniou C. 2019. Comparing machine learning and deep learning methods for real-time crash prediction. Transport Res Record. 2673(8):169–178. doi:10.1177/0361198119841571
  • Vapnik VN. 1995. The nature of statistical learning theory. The nature of statistical learning theory. New York: Springer.
  • Wang L, Shi Q, Abdel-Aty M. 2015. Predicting crashes on expressway ramps with real-time traffic and weather data. Transport Res Record. 2514(1):32–38. doi:10.3141/2514-04
  • Werneke J, Vollrath M. 2013. How to present collision warnings at intersections? - A comparison of different approaches. Accid Anal Prev. 52:91–99. doi:10.1016/j.aap.2012.12.001
  • WHO. 2017. Road Traffic Injuries [accessed 2019 Jul 18]. https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries.
  • Yan X, Zhang Y, Ma L. 2015. The influence of in-vehicle speech warning timing on drivers’ collision avoidance performance at signalized intersections. Transport Res Part C: Emerg Technol. 51:231–242. doi:10.1016/j.trc.2014.12.003
  • Yu R, Abdel-Aty M. 2013. Utilizing support vector machine in real-time crash risk evaluation. Acc Anal Prevent. 51:252–259. doi:10.1016/j.aap.2012.11.027
  • Yu R, Zheng Y, Abdel-Aty M, Gao Z. 2019. Exploring crash mechanisms with microscopic traffic flow variables: a hybrid approach with latent class logit and path analysis models. Acc Anal Prevent. 125(December 2018):70–78. doi:10.1016/j.aap.2019.01.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.