687
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and properties characterization of gallic acid epoxy resin/succinic anhydride bionanocomposites modified by green reduced graphene oxide

, , &
Pages 27-37 | Received 24 Jul 2015, Accepted 18 Sep 2015, Published online: 08 Jan 2016

References

  • Mohan, P. A. (2013) Critical Review: The modification, properties, and applications of epoxy resins. Polym. Plast. Technol. Eng., 52(1):107–125.
  • Okada, H., Tokunaga, T., Liu, X., Takayanagi, S., Matsushima, A., and Shimohigashi, Y. (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ. Environ. Heal. Persp., 116(1):32–38.
  • Vom Saal, F. S., and Hughes, C. (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Heal. Persp., 113:926–933.
  • Altuna, F. I., Espósito, L., Ruseckaite, R. A., and Stefan, P. M. (2010) Syntactic foams from copolymers based on epoxidized soybean oil. Compos. Part A, 41(9):1238–1244.
  • Hsu, S. H., Chen, R. S., Chang, Y. L., Chen, M. H., and Cheng, K. C. (2012) Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite. Acta Biomater., 8(11):4151–4161.
  • Cass, C. A., and Burg, K. J. (2012) Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. J. Biomater. Sci, Polym Ed., 23(1-4):281–298.
  • Taokaew, S., Nunkaew, N., Siripong, P., and Siripong, M. (2014) Characteristics and anticancer properties of bacterial cellulose films containing ethanolic extract of mangosteen peel. J. Biomater. Sci. Polym. Ed., 25(9):907–922.
  • Behl, G., Sharma, M., Dahiya, S., Chhikara, A., and Chopra, M. (2013) Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: synthesis, characterization, and antioxidant activity. J. Biomater. Sci. Polym. Ed., 24(7):865–881.
  • Aouf, C., Nouailhas, H., Fache, M., Caillol, S., Boutevin, B., and Fulcrand, H. (2013) Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym., 49(6):1185–1195.
  • Koh, L. B., Rodriguez, I., and Venkatraman, S. S. (2009) A novel nanostructured poly(lactic-co-glycolic-acid) multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies. Acta Biomater., 5(9):3411–3422.
  • Liu, S., Tian, M., Yan, B., Yao, Y., Zhang, L., Nishi, T., and Ning, N. (2015) High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer, 56:375–384.
  • Fu, Y., Liu, L., Zhang, J., and Hiscox, W. C. (2014) Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites. Polymer, 55(24):6381–6389.
  • Lee, J. K., Song, S., and Kim, B. (2012) Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym. Compos., 33(8):1263–1273.
  • Tian, G., Song, J., Liu, J., Qi, S., and Wu, D. (2014) Enhanced dielectric permittivity and thermal stability of graphene-polyimide nanohybrid films. Soft Mater., 12(3):290–296.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., and Dubonos, S. V. (2004) Electric field effect in atomically thin carbon films. Science, 306(5696):666–669.
  • Reina, A., Zia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J. (2008) Large area, few-layer graphene films onaArbitrary substrates by chemical vapor deposition. Nano Lett., 9(1):30–35.
  • Zhang, Y. L., Guo, L., Xia, H., Che, Q. D., Feng, J., and Sun, H. B. (2014) Photoreduction of graphene oxides: Methods, properties, and applications. Adv. Optical Mater., 2(1):10–28.
  • Hummers, W. S., and Offeman, R. E. (1958) Prepartion of graphitic oxide. J. Amer. Chem. Soc., 80(6):1339.
  • Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., and Ruoff, R. S. (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9):3019–3023.
  • Ambrosi, A., Chua, C. K., Bonanni, A., and Pumera, M. (2012) Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater., 24(12):2292–2298.
  • Kuila, T., Mishra, A. K., Khanra, P., Kim, N. H., and Lee, J. H. (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5(1):52–71.
  • Lee, G., and Kim, B. S. (2014) Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Progr., 30(2):463–469.
  • Toselli, M., Fabiani, D., Mancinelli, P., Fréchette, M., Heid, T., David, E., and Saccani, A. (2015) In situ thermal reduction of graphene oxide forming epoxy nanocomposites and their dielectric properties. Polym. Compos., 36(2):294–301.
  • Can, M., Bulut, E., and Özacar, M. (2012) Synthesis and characterization of gallic acid resin and its interaction with palladium(II), rhodium(III) chloro complexes. Ind. Eng. Chem. Res., 51(17):6052–6063.
  • Zhu, D., and Pignatello, J. J. (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol., 39(7):2033–2041.
  • Ryu, B. Y., and Emrick, T. (2011) Bisphenol-1,2,3-triazole (BPT) epoxies and cyanate esters: Synthesis and self-catalyzed curing. Macromolecules, 44(14):5693–5670.
  • Cao, L., Liu, X., Na, H., Wu, Y., Zheng, W., and Zhu, J. (2013) How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J. Mater. Chem. A, 1(16):5081–5088.
  • Ma, Z. G., and Gao, J. G. (2005) Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine. J. Phys. Chem. B, 110(7):12380–12383
  • Paredes, J. I., Rodil, S. V., Alonso, A. M., and Tascon, J. M. (2008) Graphene oxide dispersions in organic solvents. Langmuir, 24(19):10560–10564.
  • Steurer, P., Wissert, R., Thomann, R., and Mülhaupt, R. (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun., 30(4-5):316–327.
  • Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., and Guo, S. (2010) Reduction of graphene oxide via L-ascorbic acid. Chem. Commun., 46(7):1112–1114.
  • El Achaby, M., Essamlali, Y., El Miri, N., Snik, A., Abdelouahdi, K., Fihri, A., Zahouily, M., and Solhy, A. (2014) Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio-nanocomposites. J. Appl. Polym. Sci., 131(22).
  • Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., and Feng, J. (2011) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 5(1):191–198.
  • Jeong, H. K., Lee, Y. P., Jin, M. H., Kim, E. S., Bae, J. J., and Lee, Y. H. (2009) Thermal stability of graphite oxide. Chem. Phys. Lett., 470(4):255–258.
  • Liu, Q., Zhou, X., and Fan, X. (2012) Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide. Polym-Plast. Technol. Eng., 51(3):251–256.
  • Gillham, J. K. (1997) The TBA torsion pendulum: A technique for characterizing the cure and properties of thermosetting systems. Polym. Intern., 44(3):262–276.
  • Cai, D., Jin, J., and Yusoh, K. (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol., 72(6):702–707.
  • Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X., and Hu, Y. (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J. Mater. Chem., 21(35):13290–13298.
  • Wang, J. C., Hu, H. T., Wang, X. B., Xu, C. H., Zhang, M., and Shang, X. P. (2011) Preparation and mechanical and electrical properties of graphene nanosheets –poly(methyl methacrylate) nanocomposites via in situ suspension polymerization. J. Appl. Polym. Sci., 122(3):1866–1871.
  • Martin-Gallego, M., Verdejo, R., Lopez-Manchado, M. A., and Sangermano, M. (2011) Epoxy-graphene UV-cured nanocomposites. Polymer., 52(21):4664–4669.
  • Coleman, J. N., Khan, U., and Gun’ko, Y. K. (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater., 18(6):689–706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.