308
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Effect of halloysite nanotube on microstructure, rheological and mechanical properties of dynamically vulcanized PA6/NBR thermoplastic vulcanizates

, &
Pages 127-139 | Received 16 Jan 2016, Accepted 20 Feb 2016, Published online: 31 May 2016

References

  • Babu, R. R., and Naskar, K. (2011) Recent developments on thermoplastic elastomers by dynamic vulcanization. Advances in Polymer Science, 239:219–248
  • Ma, L.-F., Wei, X.-F., Zhang, Q., Wang, W.-K., Gu, L., Yang, W., Xie, B.-H., and Yang, M.-B. (2012) Toughening of polyamide 6 with b-nucleated thermoplastic vulcanizates based on polypropylene/ethylene–propylene–diene rubber grafted with maleic anhydride blends. Materials and Design, 33:104–110
  • Cho, J., Joshi, M.S., and Sun, C.T. (2006); Effect of inclusion size on mechanical properties of polymeric composites with micro and nanoparticles. Composites Science and Technology, 66:1941–1952
  • Imre, B., Renner, K., and Pukánszky, B. (2014); Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. eXPRESS Polymer Letters, 8:2–14
  • Ravati, S., and Favis, B.D. (2013) Interfacial coarsening of ternary polymer blends with partial and complete wetting structures. Polymer, 54: 6739–6751
  • Jose, S., Nair, S.V., Thomas, S., and Karger-Kocsis, J. (2006); Effect of reactive compatibilization on the phase morphology and tensile properties of PA12/PP blends. Journal of Applied Polymer Science, 99:2640–2660
  • Tiwari, R.R., and Paul, D.R. (2011); Effect of organoclay on the morphology, phase stability and mechanical properties of polypropylene/polystyrene blends. Polymer, 52:1141–1154
  • González, I., Eguiazábal, J.I., and Nazábal, J. (2006) Rubber-toughened polyamide 6/clay nanocomposites. Composites Science and Technology, 66:1833–1843
  • Prado, L.A.S. de A., Kopyniecka, A., Chandrasekaran, S., Broza, G., Roslaniec, Z., and Schulte, K. (2013) impact of filler functionalisation on the crystallinity, thermal stability and mechanical properties of thermoplastic elastomer/carbon nanotube nanocomposites. Macromolecular Materials and Engineering, 298:359–370
  • Taghizadeh, A., and Favis, B.D. (2013); Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydrate Polymers, 98:189–198
  • Xiucuo L.J., Park, W.-M., Lee, J.-O., and Ha, C.-S. (2002) Effect of blending sequence on the microstructure and properties of PBT/EVA-g-MAH/organoclay ternary nanocomposites. Polymer Engineering and Science, 42(11):2156–2164.
  • Wu, W., Wan, C., Wang, S., and Zhang, Y. (2003) Physical properties and crystallization behavior of ethylene-vinyl acetate rubber/polyamide/graphene oxide thermoplastic elastomer nanocomposites. RSC Advances, 3:26166–26176
  • Naderi, G., Lafleur, P.G., and Dubois, C. (2007) Microstructure-properties correlations in dynamically vulcanized nanocomposite thermoplastic elastomers based on PP/EPDM. Polymer Engineering and Science, 47(3):207–217.
  • Jolfaei, A.F., Gavgani, J.N., Jalali, A., and Goharpey, F. (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polymer Bulletin, 72:1127–1144
  • Naderi, G. (2015) Organoclay-reinforced dynamically vulcanized thermoplastic elastomers of polyamide-6/polyepichlorohydrin-co-ethylene oxide. Polymer Composites, 37(5):1–9
  • Liu, M., Jia, Z., Jia, D., and Zhou, C. (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8): 1498–1525
  • Pedrazzoli, D., Pegoretti, A., Thomann, R., Kristof, J., Karger-Kocsis, J. (2015) Toughening linear low-density polyethylene with halloysite nanotubes. Polymer Composites, 36(5):869–883
  • Ning, N.-Y., Yin, Q.-J., Luo, F., Zhang, Q., Du, R., and Fu, Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer, 48:7374–7384
  • Rooj, S., Das, A., Thakur, V., Mahaling, R.N., Bhowmick, A.K., and Heinrich, G. (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Materials and Design, 31:2151–2156
  • Jia, Z.-X., Luo, Y.-F., Yang, S.-Y., Guo, B.-C., Du, M.-L., and Jia, D.-M. (2009) Morphology, interfacial interaction and properties of styrene-butadiene rubber/modified halloysite nanotube nanocomposites. Chinese Journal of Polymer Science, 27(6):857−864
  • Tang, Y., Ye, L., Deng, S., Yang, C., and Yuan, W. (2012) Influences of processing methods and chemical treatments on fracture toughness of halloysite–epoxy composites. Materials and Design, 42:471–477
  • González, I., Eguiazábal, J.I., and Nazábal, J. (2008) Effects of the processing sequence and critical interparticle distance in PA6-clay/mSEBS nanocomposites. European Polymer Journal, 44:287–299
  • Gopakumar, T.G., Lee, J.A., Kontopoulou, M., and Parent, J.S. (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 43:5483–5491
  • Goharpey, F., Katbab, A.A., and Nazockdast, H. (2003) Formation of rubber particle agglomerates during morphology development in dynamically crosslinked EPDM/PP thermoplastic elastomers. Part 1: effects of processing and polymer structural parameters. Rubber Chemistry and Technology, 76:239–252
  • Bondan, F., and Bianch, O. (2015) Effect of dynamic crosslinking on phase morphology and mechanical properties of polyamide 6,12/ethylene vinyl acetate copolymer blends. Scientia cum Industria, 3:23–28
  • Lopattananon1, N., Tanglakwaraskul, S., Kaesaman, A., Seadan, M., and Sakai, T. (2014) Effect of nanoclay addition on morphology and elastomeric properties of dynamically vulcanized natural rubber/polypropylene nanocomposites. International Polymer Processing, 29:332–341
  • Naderi, G., Khosrokhavar, R., Shokoohi, S., Bakhshandeh, G.R. Ghoreishy, M.H.R. (2014) Dynamically vulcanized polypropylene/ethylene-propylene diene monomer/organoclay nanocomposites: effect of mixing sequence on structural, rheological, and mechanical properties. Journal of Vinyl and Additive Technology, 20(2):65–71
  • Nawani, P., Burger, C., Rong, L., Hsiao, B.S., and Tsou, A.H. (2015); Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polymer, 64:19–28
  • Rastin, H., Jafari, S.H., Saeb, M.R., Khonakdar, H.A., Wagenknecht, U., and Heinrich, G. (2014) On the reliability of existing theoretical models in anticipating type of morphology and domain size in HDPE/PA-6/EVOH ternary blends. European Polymer Journal, 53:1–12
  • Guo, B., Zou, Q., Lei, Y., Du, M., Liu, M., and Jia, D. (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochimica Acta, 484:48–56
  • Ahmadi, S., Jahani, Y., Naderi, G., and Asadollahzadeh, A.H. (2014) Supertough (polyamide 6)/(acrylonitrile butadiene rubber) nano alloy through in situ polymerization of caprolactam in the presence of acrylonitrile butadiene rubber nanophase. Journal of Vinyl & Additive Technology, 21(2):116–121
  • Feng, M., Gong, F., Zhao, C., Chen, G., Zhang, S., and Yang, M. (2004) Effect of clay on the morphology of blends of poly(propylene) and polyamide 6/clay nanocomposites. Polymer International, 53:1529–1537
  • Mehrabzadeh, M., and Delfan, N. (2000) Thermoplastic elastomers of butadiene-acrylonitrile copolymer and polyamide. VI. Dynamic crosslinking by different systems. Journal of Applied Polymer Science, 77:2057–2066
  • Wu, S. (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer, 26(12):1855–1863.
  • Passador, F.R., Rojas, G.J.A., and Pessan, L.A. (2013) Thermoplastic elastomers based on natural rubber/polypropylene blends: effect of blend ratios and dynamic vulcanization on rheological, thermal, mechanical, and morphological properties. Journal of Macromolecular Science, Part B: Physics, 52:1142–1157
  • Hedicke-Höchstötter, K., Lim, G.T., and Altstädt, V. (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Composites Science and Technology, 69:330–334
  • Taghizadeh, E., Naderi, G., and Razavi-Nouri, M. (2011) Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend. Polymer Testing 30:327–334
  • Ahn, Y.-C., and Paul, D.R. (2006) Rubber toughening of nylon 6 nanocomposites. Polymer, 47: 2830–2838
  • Hu, H., Onyebueke, L., and Abatan, A. (2010) Characterizing and modeling mechanical properties of nanocomposites—review and evaluation. Journal of Minerals & Materials Characterization & Engineering, 9:275–319
  • Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of Royal Society London A, 241:376–96
  • Konstantinos, G.G, Karger-Kocsis, J. (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. European Polymer Journal, 43:1097–1104
  • Sreekanth, M.S., Panwar, A.S., Pötschke, P., and Bhattacharyya, A.R. (2015) Influence of hybrid nano-filler on the crystallization behaviour and interfacial interaction in polyamide 6 based hybrid nano-composites. Physical Chemistry Chemical Physics, 17:9410–9419
  • Jain, S., Goossens, H., van Duin, M., and Lemstra, P. (2005) Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer, 46(20):8805–8818
  • Avella, M., Cosco, S., Volpe, G.D., and Errico, M.E. (2005) Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Advances in Polymer Technology, 24(2):132–144
  • Cui, L., Tarte, N.H., and Woo, S.I. (2009) Synthesis and characterization of PMMA/MWNT nanocomposites prepared by in situ polymerization with Ni(acac)2 catalyst. Macromolecules, 42:8649–8654
  • Chow, W.S., Abu Bakar, A., Mohd Ishak, Z.A., Karger-Kocsis, J., and Ishiaku, U.S. (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. European Polymer Journal, 41:687–696
  • Passador, F.R., Alzate rojas, G.J., and Pessan, L.A. (2013) Thermoplastic elastomers based on natural rubber/polypropylene blends: effect of blend ratios and dynamic vulcanization on rheological, thermal, mechanical, and morphological properties. Journal of Macromolecular Science, Part B: Physics, 52:1142–1157
  • Montazeri, A., Khavandi, A., Javadpour, J., and Tcharkhtchi, A. (2011) Viscoelastic properties of multi walled carbon nanotube/epoxy composites at the different nanotube content. Journal of Nano Research, 13:33–39
  • Nait-Ali, K.L., Bergeret, A., Ferry, L., and Colin, X. (2012) Chain branching detection by Cole–Cole modeling of rheological properties changes during PET mechanical recycling. Polymer Testing, 31:500–504
  • Perez, J., Cavaille, J.Y., Etienne, S., and Jourdan, C. (1988) Physical interpretation of the rheological behaviour of amorphous polymers through the glass transition. Revue de Physique Appliquee, 23:125–135
  • Dey, P., Naskar, K., Dash, B., Nair, S., Unnikrishnan, G., and Nando, G.B. (2015) Selective dispersion of carbon fillers into dynamically vulcanized rubber/plastic blends: a thermodynamic approach to evaluate polymer reinforcement and conductivity enhancement. RSC Advances, 5:31886–31900; 2015
  • Ayyer, R.K., and Leonov, A.I. (2004); Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates. Rheol Acta, 43:283–292
  • Taghizadeh, E., Naderi, G., and Dubois, C. (2010) Rheological and morphological properties of PA6/ECO nanocomposites. Rheologica Acta, 49:1015–1027
  • Park, B.J., Kim, T.H., Choi, H.J., and Lee, J.H. (2007) Emulsion polymerized polystyrene/montmorillonite nanocomposite and its viscoelastic characteristics. Journal of Macromolecular Science, Part B: Physics, 46:341–354
  • Lee, H.M., Park, B.J., Gupta, R.K., Bhattachary, S.N., and Choi, H.J. (2007) Preparation and rheological characteristics of ethylene-vinyl acetate copolymer/organoclay nanocomposites. Journal of Macromolecular Science, Part B, 46:261–273
  • Khosrokhavar, R., Naderi, G., Bakhshandeh, G.R., and Ghoreishy, M.H.R. (2011) Effect of processing parameters on PP/EPDM/organoclay nanocomposites using Taguchi analysis method. Iranian Polymer Journal, 20:41–53
  • Utracki, L.A., Sepehr, M.M., and Carreau, P.J. (2010) Rheology of polymers with nanofillers. Polymer Physic: From Suspensions to Nanocomposites and Beyond, 16:639–708
  • Letwimolnun, W., Vergnes, B., Ausias, G., and Carreau, P.J. (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. Journal of Non-Newtonian Fluid Mechanics, 141:167–179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.