2,035
Views
72
CrossRef citations to date
0
Altmetric
Review Article

Bigels: A unique class of materials for drug delivery applications

ORCID Icon, , , &
Pages 77-93 | Received 29 Jul 2017, Accepted 15 Oct 2017, Published online: 22 Jan 2018

References

  • Marangoni, A.G., and Garti, N. (2011) Edible Oleogels: Structure and Health Implications; AOCS Press: Urbana, Illinois.
  • Vintiloiu, A., and Leroux, J.C. (2008) Organogels and their use in drug delivery: A review. Journal Controlled Release, 125 (3):179–192.
  • Rocha-Amador, O.G., Gallegos-Infante, J.A., Huang, Q., Rocha-Guzman, N.E., Moreno-Jimenez, M.R., and Gonzalez-Laredo, R.F. (2014) Influence of commercial saturated monoglyceride, mono-/diglycerides mixtures, vegetable oil, stirring speed, and temperature on the physical properties of organogels. International Journal Food Sciences, 2014, 1–8.
  • Lloyd, D.J. (1926) The problem of gel structure, In Jerome Alexander (Ed.). Colloid Chemistry: Theoretical and Applied; The Chemical Catalog Co.: New York, 767–782.
  • Singh, V.K., Pal, K., Pradhan, D.K., and Pramanik, K. (2013) Castor oil and sorbitan monopalmitate based organogel as a probable matrix for controlled drug delivery. Journal Applications Polym Sciences, 130 (3):1503–1515.
  • Dastidar, P. (2008) Supramolecular gelling agents: Can they be designed? Chemical Social Reviews, 37 (12):2699–2715.
  • Pal, K., Singh, V.K., Anis, A., Thakur, G., and Bhattacharya, M.K. (2013) Hydrogel-Based Controlled Release Formulations: Designing Considerations, Characterization Techniques and Applications. Polym Plastic Technological Engineering, 52 (14):1391–1422.
  • Landry, C.J.T., Coltrain, B.K., and Brady, B.K. (1992) In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): Morphology and dynamic mechanical properties. Polymer, 33 (7):1486–1495.
  • Babu, S.S., Praveen, V.K., and Ajayaghosh, A. (2014) Functional π-gelators and their applications. Chemical Reviews, 114 (4):1973–2129.
  • Wichterle, O., and Lim, D. (1960) Hydrophilic gels for biological use. Nature, 185:117–118.
  • Abdallah, D.J., and Weiss, R.G. (2000) Organogels and low molecular mass organic gelators. Advancement Materials, 12 (17):1237–1247.
  • Orive, G., Anitua, E., Pedraz, J.L., and Emerich, D.F. (2009) Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews. Neuroscience, 10 (9):682–692.
  • Dickinson, E., and Hong, S.T. (1995) Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels. Journal Agricultural Food Chemical, 43 (10):2560–2566.
  • Abdallah, D.J., and Weiss, R.G. (2000) n-alkanes gel n-alkanes (and many other organic liquids). Langmuir : The ACS Journal of Surfaces and Colloids, 16 (2):352–355.
  • Placin, F., Colomes, M., and Desvergne, J.P. (1997) A new example of small molecular non-hydrogen bonding gelators for organic solvents. Tetrahedron Letters, 38 (15):2665–2668.
  • Peppas, N.A., Bures, P., Leobandung, W., and Ichikawa, H. (2000) Hydrogels in pharmaceutical formulations. European Journal Pharmaceutical Biopharmaceuticals, 50 (1):27–46.
  • Khade, S.M., Behera, B., Sagiri, S.S., Singh, V.K., Thirugnanam, A., Pal, K., Ray, S.S., Pradhan, D.K., and Bhattacharya, M.K. (2014) Gelatin–PEG based metronidazole-loaded vaginal delivery systems: Preparation, characterization and in vitro antimicrobial efficiency. Iranian Polym Journal, 23 (3):171–184.
  • Terech, P., and Weiss, R.G. (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews, 97 (8):3133–3160.
  • Osada, Y., Kajiwara, K., Fushimi, T., Irasa, O., Hirokawa, Y., Matsunaga, T., Shimomura, T., Wang, L., and Ishida, H. (2000) Gels Handbook; Elsevier Science & Technology: Amsterdam.
  • Rehman, K., and Zulfakar, M.H. (2014) Recent advances in gel technologies for topical and transdermal drug delivery. Drug Developments Industrial Pharmaceutical, 40 (4):433–440.
  • Behera, B., Singh, V.K., Kulanthaivel, S., Bhattacharya, M.K., Paramanik, K., Banerjee, I., and Pal, K. (2015) Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic - A therapeutic approach for controlled drug delivery. European Polym Journal, 64:253–264.
  • Lupi, F.R., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., and De Cindio, B. (2012) Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Research International (Ottawa, Ont.), 46 (1):177–184.
  • Lupi, F.R., Gabriele, D., Baldino, N., Mijovic, P., Parisi, O.I., and Puoci, F. (2013) Olive oil/policosanol organogels for nutraceutical and drug delivery purposes. Food & Function, 4 (10):1512–1520.
  • Lupi, F.R., Gabriele, D., Greco, V., Baldino, N., Seta, L., and De Cindio, B. (2013) A rheological characterisation of an olive oil/fatty alcohols organogel. Food Research International (Ottawa, Ont.), 51 (2):510–517.
  • Pernetti, M., Malssen, K.F., Floter, E., and Bot, A. (2007) Structuring of edible oils by alternatives to crystalline fat. Current Opinion Colloid Interface Sciences, 12 (4–5):221–231.
  • Rogers, M.A. (2009) Novel structuring strategies for unsaturated fats – meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International (Ottawa, Ont.), 42 (7):747–753.
  • Ogutcu, M., and Yilmaz, E. (2014) Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. International Journal Food Prop, 18 (8):1741–1755.
  • Bastiat, G., Plourde, F., Motulsky, A., Furtos, A., Dumont, Y., Quirion, R., Fuhrmann, G., and Leroux, J.C. (2010) Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials, 31 (23):6031–6038.
  • Schaink, H.M., Van Malssen, K.F., Morgado-Alves, S., Kalnin, D., and Van Der Linden, E. (2007) Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Research International (Ottawa, Ont.), 40 (9):1185–1193.
  • Yilmaz, E., and Ogutcu, M. (2014) Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. Journal of Food Science, 79 (9):E1732–8.
  • Lupi, F.R., Gabriele, D., Baldino, N., Seta, L., De Cindio, B., and Rose, C.D. (2012) Stabilization of meat suspensions by organogelation: A rheological approach. European Journal Lipid Sciences Technological, 114 (12):1381–1389.
  • Marangoni, A.G., and Daniel, C.E. (2012) Organogels: An alternative edible oil-structuring method. Journal American Oil Chemical Social, 89 (5):749–780.
  • Siraj, N., Shabbir, M.A., Ahmad, T., Sajjad, A., Khan, M.R., Khan, M.I., and Butt, M.S. (2015) Organogelators as a saturated fat replacer for structuring edible oils. International Journal Food Prop, 18 (9):1973–1989.
  • Dassanayake, L.S.K., Kodali, D.R., and Ueno, S. (2011) Formation of oleogels based on edible lipid materials. Current Opinion Colloid Interface Sciences, 16 (5):432–439.
  • Lupi, F.R., Gabriele, D., and De Cindio, B. (2011) Effect of shear rate on crystallisation phenomena in olive oil-based organogels. Food Bioprocess Technological, 5 (7):2880–2888.
  • Rehman, K., Iqbal, M.C., Amin, M., and Zulfakar, M.H. (2014) Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. Journal Oleo Sciences, 63 (10):961–970.
  • Wynne, A., Whitefield, M., Dixon, A., and Anderson, S. (2002) An effective, cosmetically acceptable, novel hydro-gel emollient for the management of dry skin conditions. Journal Derm Treatment, 13 (2):61–66.
  • El-Dina, H.M.N., El-Naggar, A.W.M., and Fadle, F.I.A.E. (2013) Radiation synthesis of pH-sensitive hydrogels from carboxymethyl cellulose/poly(ethylene oxide) blends as drug delivery systems. International Journal Polym Materials Polym Biomaterials, 62 (13):711–718.
  • Lin, H.R., Hsu, C.Y., and Lo, Y.L. (2013) Preparation and characterization of dual phase transition oral hydrogel for sustained release of epirubicin. International Journal Polym Materials Polym Biomaterials, 62 (14):763–769.
  • Mura, P., Faucci, M.T., Bramanti, G., and Corti, P. (2000) Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. European Journal Pharmaceutical Sciences, 9 (4):365–372.
  • Du, X., Zhou, J., Shi, J., and Xu, B. (2015) Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chemical Reviews, 115 (24):13165–13307.
  • Gallardo, V., Munoz, M., and Ruiz, M. (2005) Formulations of hydrogels and lipogels with vitamin E. J. Cosmetic Derm., 4 (3):187–192.
  • Adelmann, H., Binks, B.P., and Mezzenga, R. (2012) Oil powders and gels from particle-stabilized emulsions. Langmuir : The ACS Journal of Surfaces and Colloids, 28 (3):1694–1697.
  • Rahmani-Neishaboor, E., Jallili, R., Hartwell, R., Leung, V., Carr, N., and Ghahary, A. (2013) Topical application of a film-forming emulgel dressing that controls the release of stratifin and acetylsalicylic acid and improves/prevents hypertrophic scarring. Wound Repair and Regeneration : Official Publication of the Wound Healing Society [And] the European Tissue Repair Society, 21 (1):55–65.
  • Lupi, F.R., Gabriele, D., De Cindio, B., Sanchez, M.C., and Gallegos, C. (2011) A rheological analysis of structured water-in-olive oil emulsions. Journal Food Engineering, 107 (3–4):296–303.
  • Houze, G., Cases, E., Colas, B., and Cayot, P. (2005) Viscoelastic properties of acid milk gel as affected by fat nature at low level. International Dairy Journal / Published in Association with the International Dairy Federation, 15 (10):1006–1016.
  • Dickinson, E. (2012) Emulsion gels: the structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids, 28 (1):224–241.
  • Shewan, H.M., and Stokes, J.R. (2015) Viscosity of soft spherical micro-hydrogel suspensions. Journal Colloid Interface Sciences, 442:75–81.
  • Chen, H., Chang, X., Du, D., Li, J., Xu, H., and Yang, X. (2006) Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. International Journal Pharmaceutical, 315 (1–2):52–58.
  • Varrato, F., Di Michele, L., Belushkin, M., Dorsaz, N., Nathan, S.H., Eiser, E., and Foffi, G. (2012) Arrested demixing opens route to bigels. Proceedings Natural Academic Sciences, 109 (47):19155–19160.
  • Lee, M.N., and Mohraz, A. (2010) Bicontinuous macroporous materials from bijel templates. Advancement Materials, 22 (43):4836–4841.
  • Singh, V.K., Ramesh, S., Pal, K., Anis, A., Pradhan, D.K., and Pramanik, K. (2014) Olive oil based novel thermo-reversible emulsion hydrogels for controlled delivery applications. Journal Materials Sciences Materials Medica, 25 (3):703–721.
  • Almeida, I.F., Fernandes, A.R., Fernandes, L., Ferreira, M.R.P., Costa, P.C., and Bahia, M.F. (2008) Moisturizing effect of oleogel/hydrogel mixtures. Pharmaceutical Developments Technological, 13 (6):487–494.
  • Deng, G., Ma, Q., Yu, H., Zhang, Y., Yan, Z., Liu, F., Liu, C., Jiang, H., and Chen, Y. (2015) macroscopic organohydrogel hybrid from rapid adhesion between dynamic covalent hydrogel and organogel. ACS Macro Letters, 4 (4):467–471.
  • Di Michele, L., Varrato, F., Kotar, J., Nathan, S.H., Foffi, G., and Eiser, E. (2013) Multistep Kinetic Self-Assembly of DNA-coated Colloids. Nature Communications; arXiv preprint:arXiv:1302.5559.
  • Goyal, A., Hall, C.K., and Velev, O.D. (2010) Self-assembly in binary mixtures of dipolar colloids: molecular dynamics simulations. Journal Chemical Physical, 133 (6):064511.
  • Gong, J.P., Katsuyama, Y., Kurokawa, T., and Osada, Y. (2003) Double-network hydrogels with extremely high mechanical strength. Advancement Materials, 15 (14):1155–1158.
  • Stokes, J.R., Wolf, B., and Frith, W.J. (2001) Phase-separated biopolymer mixture rheology: prediction using a viscoelastic emulsion model. Journal Rheol, 45 (5):1173–1191.
  • Wassen, S., Bordes, R., Geback, T., Bernin, D., Schuster, E., Loren, N., and Hermansson, A.M. (2014) Probe diffusion in phase-separated bicontinuous biopolymer gels. Soft Matt, 10 (41):8276–8287.
  • Kasapis, S. (2008) Phase separation in biopolymer gels: A low- to high-solid exploration of structural morphology and functionality. Critical Rev.Food SciNutr, 48 (4):341–359.
  • Singh, V.K., Anis, A., Al-Zahrani, S.M., Pradhan, D.K., and Pal, K. (2014) Molecular and electrochemical impedance spectroscopic characterization of the carbopol based bigel and its application in iontophoretic delivery of antimicrobials. International Journal Electrochem Sciences, 9:5049–5060.
  • White, K.A., Herzig, E.M., Schofield, A.B., Poon, W.C.K., Cates, M.E., and Clegg, P.S. (2008) Tech. Proc. 2008 NSTI Nanotechnol. Conf. Trade Show; TechConnect Briefs.
  • Cates, M.E., and Clegg, P.S. (2008) Bijels: A new class of soft materials. Soft Matt, 4 (11):2132–2138.
  • Lee, M.N., Thijssen, J.H.J., Witt, J.A., Clegg, P.S., and Mohraz, A. (2013) Making a robust interfacial scaffold: Bijel rheology and its link to processability. Advancement Function Materials, 23 (4):417–423.
  • White, K.A., Schofield, A.B., Binks, B.P., and Clegg, P.S. (2008) Influence of particle composition and thermal cycling on bijel formation. Journal Phys.: Condens Matter, 20 (49):494223.
  • Witt, J.A., Mumm, D.R., and Mohraz, A. (2013) Bijel reinforcement by droplet bridging: A route to bicontinuous materials with large domains. Soft Matt, 9 (29):6773–6780.
  • Bai, L., Fruehwirth, J.W., Cheng, X., and Macosko, C.W. (2015) Dynamics and rheology of nonpolar bijels. Soft Matt, 11 (26):5282–5293.
  • Helgeson, M.E., Moran, S.E., An, H.Z., and Doyle, P.S. (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nature Mater, 11 (4):344–352.
  • Singh, V.K., Banerjee, I., Agarwal, T., Pramanik, K., Bhattacharya, M.K., and Pal, K. (2014) Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf., B, 123:582–592.
  • Blumlein, A., and McManus, J.J. (2015) Bigels formed via spinodal decomposition of unfolded protein. Journal Materials Chemistry B, 3:3429–3435.
  • Behera, B., Sagiri, S.S., Pal, K., Pramanik, K., Rana, U.A., Shakir, I., and Anis, A. (2015) Sunflower oil and protein-based novel bigels as matrices for drug delivery applications-characterization and in vitro antimicrobial efficiency. Polym Plastic Technological Engineering, 54 (8):837–850.
  • Behera, B., Sagiri, S.S., Singh, V.K., Pal, K., and Anis, A. (2014) Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch - Starke, 66 (9–10):865–879.
  • Singh, V.K., Anis, A., Banerjee, I., Pramanik, K., Bhattacharya, M.K., and Pal, K. (2014) Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Materials Sciences Eng., C, 44:151–158.
  • Lupi, F.R., Gentile, L., Gabriele, D., Mazzulla, S., Baldino, N., and De Cindio, B. (2015) Olive oil and hyperthermal water bigels for cosmetic uses. Journal Colloid Interface Sciences, 459:70–78.
  • Di Michele, L., Fiocco, D., Varrato, F., Sastry, S., Eiser, E., and Foffi, G. (2014) Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matt, 10 (20):3633–3648.
  • Leal-Calderon, F., and Schmitt, V. (2008) Solid-stabilized emulsions. Current Opinion Colloid Interface Sciences, 13 (4):217–227.
  • Lupi, F.R., Shakeel, A., Greco, V., Rossi, C.O., Baldino, N., and Gabriele, D. (2016) A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses. Materials Sciences Eng., C, 69:358–365.
  • Wakhet, S., Singh, V.K., Sahoo, S., Sagiri, S.S., Kulanthaivel, S., Bhattacharya, M.K., Kumar, N., Banerjee, I., and Pal, K. (2015) Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: A comparative study. Journal Materials Sci: Materials Medica, 26 (2):118.
  • Sahoo, S., Singh, V.K.,.K., Biswal, U., Anis, D., Rana, A., Al-Zahrani, U.A., and Pal, K., S.M. (2015) Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. Journal Applications Polym Sciences, 132 (38):42561.
  • Behera, B., Dey, S.,.V., and Pal, K., S. (2015) Rheological and viscoelastic properties of novel sunflower oil-span 40-biopolymer–based bigels and their role as a functional material in the delivery of antimicrobial agents. Advancement Polym Technical, 34 (2):21488.
  • Sagiri, S.S., Singh, V.K., Kulanthaivel, S., Banerjee, I., Basak, P., Battachrya, M.K., and Pal, K. (2015) Stearate organogel-gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal Mechanisms Behavioral Biomedical Materials, 43:1–17.
  • Satapathy, S., Singh, V.K., Sagiri, S.S., Agarwal, T., Banerjee, I., Bhattacharya, M.K., Kumar, N., and Pal, K. (2015) Development and characterization of gelatin-based hydrogels, emulsion hydrogels, and bigels: A comparative study. Journal Applications Polym Sciences, 132 (8): 41502.
  • Ibrahim, M.M., Hafez, S.A., and Mahdy, M.M. (2013) Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian Journal Pharmaceutical Sciences, 8 (1):48–57.
  • Andonova, V.Y., Peneva, P.T., Apostolova, E.G., Dimcheva, T.D., Peychev, Z.L., and Kassarova, M.I. (2017) Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Tropical Journal Pharmaceutical Researcher, 16 (7):1455–1463.
  • Rodrigues, S.F., Fiel, L.A., Shimada, A.L., Pereira, N.R., Guterres, S.S., Pohlmann, A.R., and Farsky, S.H. (2016) Lipid-Core nanocapsules act as a drug shuttle through the blood brain barrier and reduce glioblastoma after intravenous or oral administration. Journal Biomedical Nanotechnol, 12 (5):986–1000.
  • Patel, A.R., Mankoc, B., M. Db., S., Lesaffer, A., and Dewettinck, K. (2015) Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Advances, 5 (13):9703–9708.
  • Hoffman, A.S. (2012) Hydrogels for biomedical applications. Advancement Drug Delivery Reviews, 64:18–23.
  • Sagiri, S.S., Behera, B., Rafanan, R.R., Bhattacharya, C., Pal, K., Banerjee, I., and Rousseau, D. (2014) Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater, 12 (1):47–72.
  • Yu, G., Yan, X., Han, C., and Huang, F. (2013) Characterization of supramolecular gels. Chemical Social Reviews, 42 (16):6697–6722.
  • Stanley, D., Stone, A.P., and Tung, M.A. (1996) Mechanical Properties of Food, In L. M. Nollet (Ed.), Handbook of Food Analysis: Physical Characterisation and Nutrient Analysis; Marcel Dekker: New York, 93–113.
  • Voisey, P. (1975) Modernisation of texture instrumentation, In Cho-Kyun Rha, (Ed.).Theory, Determination and Control of Physical Properties of Food Materials; Springer: Dordrecht, 63–130.
  • Ross-Murphy, S.B. (1995) Rheological characterisation of gels. Journal Texture Studies, 26 (4):391–400.
  • Singh, V.K., Anis, A., Al-Zahrani, S.M., Pradhan, D.K., and Pal, K. (2014) FTIR, electrochemical impedance and iontophoretic delivery analysis of guar gum and sesame oil based bigels. International Journal Electrochem Sciences, 9 (10):5640–5650.
  • Hatakeyama, T., and Hatakeyama, H. (2004) Thermal Properties of Green Polymers and Biocomposites;; Kluwer Academic Publishers: Dordrecht.
  • Craig, D.Q.M., and Reading, M. (2007) Thermal Analysis of Pharmaceuticals; Boca Raton: CRC Press.
  • Kamaly, N., Yameen, B., Wu, J., and Farokhzad, O.C. (2016) Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116 (4):2602–2663.
  • Landmann, L. (1988) The epidermal permeability barrier. Anat. Embryology, 178 (1):1–13.
  • Martin, A.N. (1993) Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences; Lippincott Williams & Wilkins: Philadelphia, PA, USA.
  • Walters, K.A. (2002) Dermatological and Transdermal Formulations; CRC Press: New York, NY, USA.
  • Lee, M., and Desai, A. (2007) Gibaldi’s Drug Delivery Systems in Pharmaceutical Care, ASHP.
  • Fang, J.Y., Hwang, T.L., Fang, C.L., and Chiu, H.C. (2003) In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug. International Journal Pharmaceutical, 255 (1–2):153–166.
  • Kumar, R., and Katare, O.P. (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech, 6 (2):E298–310.
  • Aboofazeli, R., Zia, H., and Needham, T.E. (2002) Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement. Drug Delivery, 9 (4):239–247.
  • Kreilgaard, M. (2002) Influence of microemulsions on cutaneous drug delivery. Advancement Drug Delivery Reviews, 54:S77–S98.
  • Alberti, I., Grenier, A., Kraus, H., and Carrara, D.N. (2005) Pharmaceutical development and clinical effectiveness of a novel gel technology for transdermal drug delivery. Experiments Opinion Drug Delivery, 2 (5):935–950.
  • Prausnitz, M.R., and Langer, R. (2008) Transdermal drug delivery. Nature Biotechnology, 26 (11):1261–1268.
  • Elias, P.M. (1988) Structure and function of the stratum corneum permeability barrier. Drug Development Res, 13 (2–3):97–105.
  • Jones, D. (1999) Pharmaceutical Applications of Polymers for Drug Delivery; United Kingdom: Smithers Rapra Press.
  • Kodela, S.P., Pandey, P.M., Nayak, S.K., Uvanesh, K., Anis, A., and Pal, K. (2017) Novel agar-stearyl alcohol oleogel-based bigels as structured delivery vehicles. International Journal Polym Materials Polym Biomaterials, 66 (13):669–678.
  • Rehman, K., and Zulfakar, M.H. (2017) Novel fish oil-based bigel system for controlled drug delivery and its influence on immunomodulatory activity of imiquimod against skin cancer. Pharmaceutical Research, 34 (1):36–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.