114
Views
6
CrossRef citations to date
0
Altmetric
Articles

Macroscopic mechanical properties of elastomer nano-composites via molecular and analytical modelling

Pages 315-326 | Received 03 Jul 2018, Accepted 28 Aug 2018, Published online: 02 Oct 2018

References

  • Vilgis, T.A., Heinrich, G., and Klüppel, M. (2009) Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications; Cambridge Univ. Press: New York, USA.
  • Ikeda, Y., Kato, A., Kohjiya, S., and Nakajima, Y. (2017) Rubber Science: A Modern Approach; Springer: Heidelberg, Germany.
  • Nordsiek, K.H. (1985) The “Internal rubber” Concept - an approach to an ideal tire tread rubber. Kautschuk Gummi Kunststoffe, 38:178–185.
  • Wrana, C., Eisele, U., and Kelbch, S. (2000) Measurement and molecular modeling of rolling resistance in tire treads. Kautschuk Gummi Kunststoffe, 53:126–128.
  • Futamura, S., and Goldstein, A.A. (2016) Prediction and simulation of tire performance characteristics based on deformation index concept. Rubber Chemistry and Technology, 89:1–21. doi:10.5254/rct.15.84853
  • Zhang, P., Morris, M., and Doshi, D. (2016) Materials development for lowering rolling resistance of tires. Rubber Chemistry and Technology, 89:79–116. doi:10.5254/rct.16.83805
  • Hall, D.E., and Moreland, J.C. (2001) Fundamentals of rolling resistance. Rubber Chemistry and Technology, 74:525–539. doi:10.5254/1.3547650
  • Akutagawa, K., Koide, M., and Heguri, H. (2003) Constitutive Models for Rubber III, Proceedings of the Third European Conference on Constitutive Models for Rubber, London, UK; Sept 15-17, 2003; Busfield, J, and Muhr, A Eds.; CRC Press: Boca Raton.
  • Davies, C.K.L., De, D.K., and Thomas, A.G. (1994) Characterization of the behavior of rubber for engineering design purposes. 1. Stress-strain relations. Rubber Chemistry and Technology, 67:716–728. doi:10.5254/1.3538706
  • Kraus, G. Ed. (1965). Reinforcement of Elastomers; John Wiley & Sons: New York, USA.
  • Ghosh, P., Saha, A., and Mukhopadhyay, R. (2003) In Constitutive Models for Rubber III, Proceedings of the Third European Conference on Constitutive Models for Rubber, London, UK; Sept 15-17, 2003; Busfield, J, and Muhr, A Eds.; CRC Press: Boca Raton.
  • Rendek, M., and Lion, A. (2010) Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM-implementation. International Journal of Solids and Structures, 47:2918–2936. doi:10.1016/j.ijsolstr.2010.06.021
  • Pálfi, L., Goda, T., and Váradi, K. (2009) Theoretical prediction of hysteretic rubber friction in ball on plate configuration by finite element method. eXPRESS Polymer Letters, 3:713–723. doi:10.3144/expresspolymlett.2009.89
  • Andersen, L.G., Larsen, J., Fraser, E.S., Schmidt, B., and Dyre, J.C. (2015) Rolling resistance measurement and model development. Journal of Transportation Engineering, 141:04014075. doi:10.1061/(ASCE)TE.1943-5436.0000673
  • Le Gal, A., and Klüppel, M. (2008) Investigation and modelling of rubber stationary friction on rough surfaces. Journal of Physics: Condensed Matter, 20:015007.
  • Hentschke, R. (2017) The payne effect revisited. eXPRESS Polymer Letters, 11:278–292. doi:10.3144/expresspolymlett.2017.28
  • Kraus, G. (1984) Mechanical losses in carbon-black-filled rubbers. Applied Polymer Symposia, 39:75–92.
  • Maier, P., and Göritz, D. (1996) Molecular interpretation of the payne effect. Kautschuk Gummi Kunststoffe, 49:18–21.
  • Heinrich, G., and Vilgis, T.A. (2015) A statistical mechanical approach to the payne effect in filled rubbers. eXPRESS Polymer Letters, 9:291–299. doi:10.3144/expresspolymlett.2015.26
  • Hentschke, R., Hager, J., and Hojdis, N.W. (2014) Molecular modeling approach to the prediction of mechanical properties of silica-reinforced rubbers. Journal of Applied Polymer Science, 131:40806. doi:10.1002/app.40806
  • Meyer, J., Hentschke, R., Hager, J., Hojdis, N.W., and Karimi-Varzaneh, H.A. (2017) A nano-mechanical instability as primary contribution to rolling resistance. Scientific Reports, 7:11275. doi:10.1038/s41598-017-11728-6
  • Hentschke, R. (2017) Classical Mechanics; Springer: Heidelberg, Germany.
  • Stöckelhuber, K.W., Svistkov, A.S., Pelevin, A.G., and Heinrich, G. (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 44:4366–4381. doi:10.1021/ma1026077
  • Einstein, A. (1906) Eine neue bestimmung der moleküldimension. Annalen Der Physik, 19:289–306. doi:10.1002/andp.19063240204
  • Smallwood, H.M. (1944) Limiting law of the reinforcement of rubber. Journal Applications Physical, 15:758–766. doi:10.1063/1.1707385
  • https://en.wikipedia.org/wiki/Carbon_black
  • Hess, W.M., and McDonald, G.C. (1983) Improved particle size measurements on pigments for rubber. Rubber Chemistry and Technology, 56:892–917. doi:10.5254/1.3538171
  • Saad, I.S., Fayed, M.S., and Abdel-Bary, E.M. (May 26-28 2009) Effects of Carbon Black Content on Cure Characteristics, Mechanical Properties and Swelling Behaviour of 80/20 NBR/CIIR Blend; Aerospace Science & Aviation Technology, ASAT-13, Military Technical College, Kobry Elkobbah, Cairo, Egypt.
  • Marangoni, A.G., and Wesdorp, L.H. (2013) Structure and Properties of Fat Crystal Networks; CRC Press: Boca Raton, USA.
  • Robertson, C.G., Lin, C.J., Rackaitis, M., and Roland, C.M. (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules, 41:2727–2731. doi:10.1021/ma7022364
  • Israelachvili, J. (1991) Intermolecular and Surface Forces; Academic Press: London, UK.
  • Wang, M.-J. (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chemistry and Technology, 71:520–589. doi:10.5254/1.3538492
  • Degussa Technical Report 812, Carbon Blacks for Electrically Conductive Rubber Products, Degussa AG, Advanced Fillers and Pigment Division.
  • Stöckelhuber, K.W., Wießner, S., Das, A., and Heinrich, G. (2017) Filler flocculation in polymers – a simplified model derived from thermodynamics and game theory. Soft Matter, 13:3701–3709. doi:10.1039/c6sm02694j
  • Gundlach, N., and Hentschke, R. (2018) Modelling filler dispersion in elastomers: relating filler morphology to interface free energies via SAXS and TEM simulation studies. Polymers, 10:446–460. doi:10.3390/polym10040446
  • Merabia, S., Sotta, P., and Long, D.R. (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules, 41:8252–8266. doi:10.1021/ma8014728
  • He, X., and Hentschke, R. (2014) The influence of structure on mechanical properties of filler networks via coarse-grained modeling. Macromolecular Theory and Simulation, 23:373–382. doi:10.1002/mats.201400009
  • Ivaneiko, I., Toshchevikov, V., Saphiannikova, M., Stöckelhuber, K.W., Petry, F., Westermann, S., and Heinrich, G. (2016) Modeling of dynamic-mechanical behavior of reinforced elastomers using a multiscale approach. Polymer, 82:356–365. doi:10.1016/j.polymer.2015.11.039
  • Ivaneiko, I., Toshchevikov, V., Stöckelhuber, K.W., Saphiannikova, M., and Heinrich, G. (2017) Superposition approach to the dynamic-mechanical behaviour of reinforced rubbers. Polymer, 127:129–140. doi:10.1016/j.polymer.2017.08.051
  • Li, Y., Abberton, B.C., Kröger, M., and Liu, W.K. (2013) Challenges in multiscale modeling of polymer dynamics. Polymers, 5:751–832. doi:10.3390/polym5020751

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.