180
Views
4
CrossRef citations to date
0
Altmetric
Articles

Development of new amphiphilic bio-organic assemblies for potential applications in iron-binding and targeting tumor cells

&
Pages 57-76 | Received 25 Feb 2018, Accepted 12 Nov 2018, Published online: 10 Dec 2018

References

  • Wang, J., and Pantopoulos, K. (2011) Regulation of cellular iron metabolism. The Biochemical Journal, 434(3): 365–381. doi:10.1042/BJ20101825
  • Pahl, M.B.P., and Horwitz, L.D. (2005) Cell permeable iron chelators as potential cancer chemotherapeutic agents. Cancer Investigation, 23(8): 683–691. doi:10.1080/07357900500359976
  • McCord, J.M. (1998) Iron, free radicals, and oxidative injury. Seminars in Hematology, 35(1): 5–12.
  • Saran, M., Michel, C., Stettmaier, K., and Bors, W. (2000) Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radical Research, 33(5): 567–579. doi:10.1080/10715760000301101
  • Toyokuni, S. (2002) Iron and carcinogenesis: from Fenton reaction to target genes. Redox Report : Communications in Free Radical Research, 7(4): 189–197. doi:10.1179/135100002125000596
  • Jackson, J.H. (1994) Potential molecular mechanisms of oxidant-induced carcinogenesis. Environmental Health Perspectives, 102(Suppl.10): 155–157. doi:10.1289/ehp.94102s691
  • Oppenheim, E.W., Nasrallah, T.M., Mastri, M.G., and Stover, P.J. (2000) Mimosine is a cell-specific antagonist of folate metabolism. The Journal of Biological Chemistry, 275(25): 19268–19274. doi:10.1074/jbc.M001610200
  • Lederman, H.M., Cohen, A., Lee, J.W., Freedman, M.H., and Gelfand, E.W. (1984) Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood, 64(3): 748–753.
  • Netz, D.J., Stith, C.M., Stumpfig, M., Kopf, G., Vogel, D., Genau, H.M., Stodola, J.L., Lill, R., Burgers, P.M., and Pierik, A.J. (2012) Eukaryotic DNA polymerases require an iron–sulfur cluster for the formation of active complexes. Nature Chemical Biology, 8: 125–132. doi:10.1038/nchembio.721
  • Fleming, R.E., and Ponka, P. (2012) Iron overload in human disease. The New England Journal of Medicine, 366: 348–359. doi:10.1056/NEJMra1004967
  • Huang, X. (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 533(1–2): 153–171. doi:10.1016/j.mrfmmm.2003.08.023
  • El-Deiry, W.S. (1998) Regulation of p53 downstream genes. Seminars in Cancer Biology, 8(5): 345–357. doi:10.1006/scbi.1998.0097
  • Fukuchi, K., Tomoyasu, S., Watanabe, H., Kaetsu, S., Tsuruoka, N., and Gomi, K. (1995) Iron deprivation results in an increase in p53 expression. Biological Chemistry Hoppe-Seyler, 376(10): 627–630.
  • Liang, S., and Richardson, D.R. (2003) The effect of potent iron chelators on the regulation of p53: examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1. Carcinogenesis, 24(10): 1601–1614. doi:10.1093/carcin/bgg116
  • Mobarra, N., Shanaki, M., Ehteram, H., Nasiri, H., Sahmani, M., Saeidi, M., Goudarzi, M., Pourkarim, H., and Azad, M. (2016) A review on iron chelators in treatment of iron overload syndromes. International Journal of Hematology-Oncology and Stem Cell Research, 10(4): 239–247.
  • Bedford, M.R., Ford, S.J., Horniblow, R.D., Iqbal, T.H., and Tselepis, C. (2013) Iron chelation in the treatment of cancer: a new role for deferasirox. Journal of Clinical Pharmacology, 53(9): 885–891. doi:10.1002/jcph.113
  • Perez, L.R., and Franz, K.J. (2010) Minding metal: tailoring multifunctional chelating agents for neurodegenerative disease. Dalton Transactions, 39(9): 2177–2187. doi:10.1039/b919237a
  • Poggiali, E., Cassinerio, E., Zanaboni, L., and Cappellini, M.D. (2012) An update on iron chelation therapy. Blood Transfusion, 10(4): 411–412. doi:10.2450/2012.0008-12
  • Hileti, D., Panayiotidis, P., and Hoffbrand, A.V. (1995) Iron chelators induce apoptosis in proliferating cells. British Journal of Haematology, 89(1): 181–187.
  • Hoffbrand, A.V. (1994) Prospects for oral iron chelation therapy. The Journal of Laboratory and Clinical Medicine, 123(4): 492–494.
  • Richardson, D.R., Tran, E.H., and Ponka, P. (1995) The potential of iron chelators of the pyrridoxal isonicotinyol hydrazine class as effective antiproliferative agents. Blood, 86(11): 4295–4306.
  • Richardson, D.R. (1998) Analogues of pyridoxal isonicotinoyl hydrazone (PIH) as potential iron chelators for the treatment of neoplasia. Leukemia Lymphoma, 31(1–2): 47–60. doi:10.3109/10428199809057584
  • Mauricio, A.Q., Lopes, G., Gomes, C.S., Oliveira, R.G., Alonso, A., and Hermes-Lima, M. (2003) Pyridoxal isonicotinoyl hydrazine inhibits iron-induced ascorbate oxidation and ascorbyl radical formation. Biochimica et Biophysica Acta, 1620(1–3): 15–24.
  • Hershko, C., Avramovici-Grisaru, S., Link, G., Gelfand, L., and Sarel, S. (1981) Mechanism of in vivo iron chelation by pyridoxal isonicotinoyl hydrazone and other imino derivatives of pyridoxal. The Journal of Laboratory and Clinical Medicine, 98(1): 99–108.
  • Ponka, P., Borova, J., Neuwirt, J., and Fuchs, O. (1979) Mobilization of iron from reticulocytes: identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent. FEBS letters, 97(2): 317–321.
  • Hermes-Lima, M., Ponka, P., and Schulman, H.M. (2000) The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate. Biochimica et biophysica acta, 1523(2–3): 154–160. doi:10.1016/S0304-4165(00)00115-X
  • Bergeron, R.J., Wiegan, J., McManis, J.S., and Bharti, N. (2014) Desferrithiocin: A search for clinically effective iron chelators. Journal of Medicinal Chemistry, 57(22): 9259–9291. doi:10.1021/jm500828f
  • Bergeron, R.J., Wiegan, J., Dionis, J.B., Egli-Karmakka, M., Frei, J., Huxley-Tencer, A., and Peter, H.H. (1991) Evaluation of desferrithiocin and its synthetic analogues as orally effective iron chelators. Journal of Medicinal Chemistry, 34(7): 2072–2078. doi:10.1021/jm00111a023
  • Baker, E., Wong, A., Peter, H., and Jacobs, A. (1992) Desferrithiocin is an effective iron chelator in vivo and in vitro but ferrithiocin is toxic. British Journal of Haematology, 81(3): 424–431. doi:10.1111/j.1365-2141.1992.tb08251.x
  • Torti, S.V., Torti, F.M., Whitman, S.P., Brechbiel, M.W., Park, G., and Planalp, R.P. (1998) Tumor cell cytotoxicity of a novel metal chelator. Blood, 92(4): 1384–1389.
  • Greene, B.T., Thorburn, J., Willingham, M.C., Thorburn, A., Planalp, R.P., Brechbiel, M.W., Jennings, G.J., Wilkinson, J., Torti, F.M., and Torti, S.V. (2002) Activation of caspase pathways during iron chelator-mediated apoptosis. The Journal of Biological Chemistry, 277(28): 25568–25575. doi:10.1074/jbc.M110345200
  • Rakba, N., Aouad, F., Henry, C., Caris, C., Morel, I., Baret, P., Pierre, J.-L., Brissot, P., Ward, R.J., Lescoat, G., and Crichton, R.R. (1998) Iron mobilization and cellular protection by a new synthetic chelator O-Trensox. Biochemical Pharmacology, 55(11): 1797–1806. doi:10.1016/S0006-2952(98)00009-4
  • Saeki, I., Yamamoto, N., Yamasaki, T., Takami, T., Maeda, M., Fujisawa, K., Iwamoto, T., Mastumoto, T., Hidaka, I., Ishikawa, T., Uchida, K., Tani, K., and Sakaida, I. (2016) Effects of an oral iron chelator, deferasirox on advanced hepatocellular carcinoma. World Journal of Gastroenterology : WJG, 22(40): 8967–8977. doi:10.3748/wjg.v22.i40.8967
  • Harima, H., Kaino, S., Takami, T., Shinoda, S., Matsumoto, T., Fujisawa, K., Yamamoto, N., Yamasaki, T., and Sakaida, I. (2016) Desferasirox, a novel oral iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. BMC Cancer, 16: 702. doi:10.1186/s12885-016-2744-9
  • Cappellini, M.D. (2007) Exjade (R) (deferasirox, ICL670) in the treatment of chronic iron overload associated with blood transfusion. Therapeutics and Clinical Risk Management, 3(2): 291–299. doi:10.2147/tcrm.2007.3.2.291
  • Yu, Y., Wong, J., Lovejoy, D.B., Kalinowski, D.S., and Richardson, D.R. (2006) Chelators at the cancer coalface: desferrioxamine to Triapine and beyond. Clinical Cancer Research, 12(23): 6876–6883. doi:10.1158/1078-0432.CCR-06-1954
  • Yuan, J., Lovejoy, D.B., and Richardson, D.R. (2004) Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood, 104(5): 1450–1458. doi:10.1182/blood-2004-03-0868
  • Whitnall, M., Howard, J., Ponka, P., and Richardson, D.R. (2006) A novel class of iron chelators with a wide spectrum of potent anti-tumor activity that overcome resistance to chemotherapeutics. Proceedings of the National Academy of Sciences of the United States of America, 103(40): 1490–1496. doi:10.1073/pnas.0604979103
  • Liu, Z., Wang, Y., Purro, M., and Xiong, M.P. (2016) Oxidation-induced degradable nanogels for iron chelation. Scientific Reports, 12(6): 20923. doi:10.1038/srep20923
  • Wang, Y., Liu, Z., Lin, T.M., Chanana, S., and Xiong, M.P. (2018) Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution and iron chelation in vivo. International Journal of Pharmaceutics, 538(1–2): 79–86. doi:10.1016/j.ijpharm.2018.01.004
  • Liu, G., Men, P., Harris, P., Rolston, R., Perry, G., and Smith, M.A. (2006) Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neuroscience Letters, 406(3): 189–193. doi:10.1016/j.neulet.2006.07.020
  • Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., and Betbeder, D. (1999) Evaluation of effect of charge on lipid coating on ability of 60 nm nanoparticles to cross in vitro model of the blood-brain barrier. The Journal of Pharmacology and Experimental Therapeutics, 291(3): 1017–1022.
  • Lee, J.H., Engler, J.A., Collawan, J.F., and Moore, B.A. (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. European Journal of Biochemistry / FEBS, 268(7): 2004–2012.
  • Di Gioia, M.L., Leggio, A., Le Pera, A., Siciliano, C., Liguori, A., and Sindona, G. (2004) An efficient and highly selective deprotection of N-Fmoc- alpha-amino acid and lipophilic N-Fmoc- dipeptide methyl esters with aluminium trichloride and N,N-dimethylaniline. The Journal of Peptide Research, 63(4): 383–387. doi:10.1111/j.1399-3011.2004.00104.x
  • Yang, Z.M., Gu, H.W., Zhang, Y., Wang, L., and Xu, B. (2004) Small molecule hydrogels based on a class of anti-inflammatory agents. Chemical Communications, 208–209. doi:10.1039/b310574a
  • Rosenkrantz, H., and Metterville, J. (1988) Preliminary toxicity data on new ethylenediamine derivatives designed for iron chelation. International Journal of Toxicology, 7(5): 617–629.
  • Zhou, C., Ye, H., Ang, H., Qin, H., and Li, J. (2015) Coordination of L-Arginine and iron cation improves stability of hemoglobin concentrates. European Food Research and Technology, 240(4): 743–751. doi:10.1007/s00217-014-2379-5
  • Mukherjee, J., Lucas, R.L., Zart, M.K., Powell, D.R., Day, V.W., and Borovik, A.S. (2008) Synthesis, structure, and physical properties for a series of monomeric iron(III) hydroxo complexes with varying hydrogen-bond networks. Inorganic Chemistry, 47(13): 5780–5786. doi:10.1021/ic800048e
  • Biswas, S., Belfield, K.D., Das, R.K., Ghosh, S., and Hebard, A.F. (2012) Superparamagnetic nanocomposites template with pyrazole-containing building blocks. Polymers, 4(2): 1211–1225. doi:10.3390/polym4021211
  • Dai, H., Ge, S., Guo, J., Chen, S., Huang, M., Yang, J., Sun, S., Ling, Y., and Shi, Y. (2018) Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. European Journal of Medicinal Chemistry, 143(1): 1066–1076. doi:10.1016/j.ejmech.2017.11.098
  • Konijin, A.M., Glickstein, H., Vaisman, B., Meyron-Holtz, E., Slotki, I.N., and Cabantchik, Z.I. (1999) The cellular labile iron pool and intracellular ferritin in K562 cells. Blood, 94(6): 2128–2134.
  • Qian, M.W., and Eaton, J.W. (1989) Tobacco-borne siderophoric activity. Archives of Biochemistry and Biophysics, 275(1): 280–288. doi:10.1016/0003-9861(89)90374-3
  • Gao, X., Campian, J.L., Qian, M., and Sun, X.F. (2009) Mitochondrial DNA damage in iron overload. The Journal of Biological Chemistry, 284(8): 4767–4775. doi:10.1074/jbc.M806235200
  • Wojtala, A., Bonora, M., Malinska, D., Pinton, P., Duszynski, J., and Wieckowski, M.R. (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods in Enzymology, 542(0076–6879): 243–262. doi:10.1016/B978-0-12-416618-9.00013-3
  • Rieger, A., Nelson, K.L., Konowalchuk, J.D., and Barreda, D.R. (2011) Modified annexin V/propidium iodide assay for accurate assessment of cell death. Journal of Visualized Experiments, 50: 2597.
  • Hughes, M., Birchall, L.S., Zuberi, K., Aitken, L., Debnath, S., Javid, N., and Ulijn, R.V. (2012) Differential supramolecular oragnization of Fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter, 8: 11565–11574. doi:10.1039/c2sm26092a
  • Romanelli, S.M., Hartnett, J.W., and Banerjee, I.A. (2015) Effects of amide side chains on nanoassembly formation and gelation of Fmoc-valine conjugates. Powder Technology, 271: 76–87. doi:10.1016/j.powtec.2014.10.028
  • Tao, K., Levin, A., Adler-Abramovich, and Gazit, E. (2016) Fmoc-modified amino acids and short peptides: simple bioinspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 45: 3935–3953. doi:10.1039/c5cs00889a
  • Liu, T., DuBois, D.L., and Bullock, R.M. (2013) An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nature Chemistry, 5: 228–233. doi:10.1038/nchem.1571
  • Moreira da silva, A.F., Pinheiro, C., Resende, J.A.L.C., and Lanznaster, M. (2017) Evaluation of iron (III)-N(amine)2N(py)2 complexes as potential bioreductively activated carriers for naphthaquinone-based drugs. Polyhedron, 123: 132–137. doi:10.1016/j.poly.2016.10.042
  • Mong, T.K.K., Niu, A., Chow, H.-F., Wu, C., Li, L., and Chen, R. (2001) β-Alanine based dendritic beta-peptides: dendrimers possessing unusually strong binding ability towards protic solvents and their self-assembly into nanoscale aggregates through hydrogen bonding interaction. Chemistry A European Journal, 7(3): 686–699. doi:10.1002/1521-3765(20010202)7:3<686::AID-CHEM686>3.0.CO;2-Z
  • Mu, X., Eckes, K., Nguyen, M., Suggs, S.J., and Ren, P. (2012) Experimental and computational studies reveal an alternative supramolecular structure for Fmoc-dipeptide self-assembly. Biomacromolecules, 13(11): 3562–3571. doi:10.1021/bm301007r
  • Shimoni, L., and Glusker, J.P. (1995) Hydrogen-bonding motifs of protein side-chains − descriptions of binding of arginine and amide groups. Protein Science, 4(1): 65−74. doi:10.1002/pro.5560040104
  • Gallivan, J.P., and Dougherty, D.A. (1999) Cation-pi interactions in structural biology. Proceedings of the National Academy of Sciences of the United States of America, 96(17): 9459−9464. doi:10.1073/pnas.96.17.9459
  • Appe, W.P.J., Portale, G., Wisse, E., Dankers, P.Y.W., and Meijer, E.W. (2011) Aggregation of Ureido-Pryrimidinone Supramolecular thermoplastic elastomers into nanofibers: A kinetic analysis. Macromolecules, 44(17): 6776–6784. doi:10.1021/ma201303s
  • Rai, S.K., Srivastava, P., Gupta, H., Puerta, D.C., Valerga, P., and Tewari, A.K. (2015) Unusual reverse face-to-face stacking in propylyene linked pyrazole system: perspective of organic materials. Structural Chemistry, 26(2): 555–563. doi:10.1007/s11224-014-0512-5
  • Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., and Fernandez-Casano, C. (1999) Self-assembly of NH-pyrazoles via intermolecular N-H—N hydrogen bonds. Acta Crystallization, B55(6): 985–993. doi:10.1107/S0108768199004966
  • Wangler, C., Nada, D., Hofner, G., Maschauer, S., Wangler, B., Schneider, S., Schirrmacher, E., Wanner, K.T., Schirrmacher, R., and Prante, O. (2011) In vitro and initial in vivo evaluation of (68) Ga-labeled transferrin receptor (TfR) binding peptides as potential carriers for enhanced drug transport into TfR expressing cells. Molecular Imaging and Biology, 13(2): 332–341. doi:10.1007/s11307-010-0329-6
  • Zondlo, N.J. (2013) Aromatic-proline interactions: electronically tunable CH/π interactions. Accounts of Chemical Research, 46(4): 1039–1049. doi:10.1021/ar300087y
  • Dawson, J.P., Weinger, J.S., and Engleman, D.M. (2002) Motifs of serine and threonine can drive association of transmembrane helices. Journal of Molecular Biology, 316(3): 799–805. doi:10.1006/jmbi.2001.5353
  • Kumar, K., Woo, S.M., Siu, T., Cortopassi, W.A., Duarte, F., and Paton, R.S. (2018) Cation-π interactions in protein-ligand binding: theory and data mining reveal different roles for lysine and arginine. Chemical Science, Adv. Article. doi:10.1039/C7SC04905F
  • Rothschild, K.J., He, Y.-W., Gray, D., Roepe, P.D., Pelletier, S.L., Brown, R.S., and Herzfeld, J. (1989) Fourier transform infrared evidence for proline structural changes during bacteriorhodopsin photocycle. Proceedings of the National Academy of Science, 86(24): 9832–9835. doi:10.1073/pnas.86.24.9832
  • Piasek, Z., and Ubranski, T. (1962) Infra-red absorption spectrum and structure of urea. Bulletin Academy Polonaise Science, Serie Des Science Chimie, 10(3): 113–120.
  • Chithambarathanu, T., Umayorubaghan, V., and Krishnakumar, V. (2003) Vibrational analysis of some pyrazole derivatives. Indian Journal of Pure and Applied Physics, 41(11): 844–848.
  • Bass, R., and Saltman, P. (1959) The accumulation of iron by rat liver cell suspensions. Experimental Cell Research, 18(3): 560–572.
  • Goto, Y., Paterson, M., and Listowsky, I. (1983) Iron uptake and regulation of ferritin synthesis by hepatoma cells in hormone-supplemented serum-free media. The Journal of Biological Chemistry, 258(8): 5248–5255.
  • Viola, S., Merlos, S., Consoli, G.M.L., Drago, F., Geraci, C., and Sortino, M.A. (2010) Modulation of C6 Glioma cell proliferation by ureido-Calix[8]arenes. Pharmacology, 86(3): 182–188. doi:10.1159/000317518
  • Nitulescu, G.M., Draghici, C., and Olaru, O.T. (2013) New potential antitumor pyrazole derivatives: synthesis and cytotoxic evaluation. International Journal of Molecular Sciences, 14(11): 21805–21818. doi:10.3390/ijms141121805
  • Sawosz, E., Jaworski, S., Kutwin, M., Vadalasetty, K.P., Grodzik, M., Wierzbicki, M., Kurantowicz, N., Strojny, B., Hotowy, A., Lipinska, L., Jagiello, J., and Chwalibog, A. (2015) Graphene functionalized with arginine decreases the development of glioblastoma multiforme tumor in a gene-dependent manner. International Journal of Molecular Sciences, 16(10): 25214–25233. doi:10.3390/ijms161025214
  • Wallbrecher, R., Ackels, T., Olea, R.A., Klein, M.J., Caillon, L., Schiller, J., Bovee-Geurts, P., van Kuppevelt, T., Ulrich, A., Spehr, M., Adjobo-Hermans, M., and Brock, R. (2017) Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. Journal of Controlled Release, 256(28): 68–78. doi:10.1016/j.jconrel.2017.04.013
  • Ward, J., Kushner, J.P., and Kaplan, J. (1982) Regulation of HeLa cell transferrin receptors. The Journal of Biological Chemistry, 257(17): 10317–10323.
  • Kaplan, J., Jordan, I., and Sturrock, A. (1991) Regulation of the transferrin-independent iron transport system in cultured cells. The Journal of Biological Chemistry, 266(5): 2997–3004.
  • Richardson, D.R., and Baker, E. (1992) The effect of desferrioxamine and ferric ammonium citrate on uptake of iron by the membrane iron-binding component of human melanoma cells. Biochim. Biophys. Acta, 1103(2): 275–280.
  • Cabantchik, Z.I., Glickstein, H., Milgram, P., and Breuer, W. (1996) A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells. Analytical Biochemistry, 233(2): 221–227. doi:10.1006/abio.1996.0032
  • Ma, Y., Abbate, V., and Hider, R.C. (2015) Iron-sensitive fluorescent probes: monitoring intracellular iron pools. Metallomics : Integrated Biometal Science, 7(2): 212–222. doi:10.1039/c4mt00214h
  • Li, S.-W., Liu, C.-M., Guo, J., Marcondes, A.M., Deeg, J., Li, X., and Guan, F. (2016) Iron overload induced by ferric ammonium citrate triggers reactive oxygen species-mediated apoptosis via both extrinsic and intrinsic pathways in human hepatic cells. Human & Experimental Toxicology, 35(6): 598–607. doi:10.1177/0960327115597312
  • Kukielka, E., and Cederbaum, A. (1995) Increased production of hydroxyl radical by pericentral microsomes compared to periportal microsomes after pyrazole induction of cytochrome P4502E1. Biochemical and Biophysical Research Communications, 215(2): 698–705. doi:10.1006/bbrc.1995.2520
  • Akbas, E., Celikezen, F.C., Turkez, H., Ozdemir, O., Ruzgar, A., Ergan, E., and Sahin, E. (2017) Synthesis of the 3,5-diphenyl-1H-pyrazole and cytogenetic and oxidative alterations after exposure of cultured human whole blood cells. Cogent Chemistry, 3: 1344115. doi:10.1080/23312009.2017.1344115
  • Srinivasan, S., and Narayan, G.A. (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radical Biology & Medicine, 53(6): 1252–1263. doi:10.1016/j.freeradbiomed.2012.07.021
  • Cardoso, S.M., Proenca, M.T., Santos, S., Santana, I., and Oliveria, C.R. (2004) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiology of Aging, 25(1): 105–110. doi:10.1016/S0197-4580(03)00033-2
  • van Genderen, H.O., Kenis, H., Hofstra, L., Narula, J., and Reutelingsperger, P.M. (2008) Extracellular annexin A5: functions of phosphatidylserine-binding and two dimensional crystallization. Biochimica Et Biophysica Acta, Molecular Cell Research, 1783(6): 953–963. doi:10.1016/j.bbamcr.2008.01.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.