213
Views
8
CrossRef citations to date
0
Altmetric
Articles

Filler flocculation in elastomer blends - an approach based on measured surface tensions and monte carlo simulation

, &
Pages 283-296 | Received 22 Aug 2018, Accepted 08 Jan 2019, Published online: 05 Feb 2019

References

  • Böhm, G.G.A., and Nguyen, M.N. (1995) Flocculation of carbon black in filled rubber compounds. 1. flocculation occurring in unvulcanized compounds during annealing at elevated temperatures. Journal of Applied Polymer Science, 55:1041–1050. doi:10.1002/app.1995.070550707
  • Lin, C.J., Hergenrother, W.L., Alexanian, E., and Böhm, G.G.A. (2002) On the filler flocculation in silica-filled rubbers part I. Quantifying and tracking the filler flocculation and polymer-filler interactions in the unvulcanized rubber compound. Rubber Chemistry and Technology, 75:865–890. doi:10.5254/1.3547689
  • Mihara, S., Datta, R.N., and Noordermeer, J. (2009) Flocculation in silica reinforced rubber compounds. Rubber Chemistry and Technology, 82:524–540. doi:10.5254/1.3548262
  • Mihara, S., Datta, N., Dierkes, W.K., Noordermeer, J.W.M., Amino, N., Ishikawa, Y., Nishitsuji, S., and Takenaka, M. (2014) Ultra small-angle X-ray scattering study of flocculation in silica-filled rubber. Rubber Chemistry and Technology, 87:348–359. doi:10.5254/rct.13.88958
  • Robertson, C.G. (2015) Flocculation in elastomeric polymers containing nanoparticles: jamming and the new concept of fictive dynamic strain. Rubber Chemistry and Technology, 88:463–474. doi:10.5254/rct.15.85950
  • Payne, A.R. (1965) In Reinforcement of Elastomers; Kraus, G, Ed.; Interscience Publishers: New York.
  • Vilgis, T.A., Heinrich, G., and Klüppel, M. (2009) Reinforcement of Polymer Nano-Composites; Cambridge University Press: New York.
  • Luginsland, H.-D. A Review on the Chemistry and the Reinforcement of the Silica-Silane Filler System for Rubber Applications; Shaker Verlag: Aachen, 2002 doi:10.1044/1059-0889(2002/er01)
  • Kraus, G., Ed. (1965) Reinforcement of Elastomers; Interscience Publishers: New York.
  • Kraus, G. (1984) Mechanical Losses in carbon black filled rubbers. Journal of Applied Polymer Science. Applied Polymer Symposium, 39:75–92.
  • Stanley, H.E., and Ostrowsky, N., Eds. (1986) On Growth and Form - Fractal and Non-Fractal Pattern in Physics; Martinus Nijhoff Publishers, Dordrecht.
  • Brown, W.D. The Structure and Physical Properties of Flocculating Colloids. Ph.D. thesis, University of Cambridge, 1987
  • Buscall, R., Mills, P.D.A., Goodwin, J.W., and Lawson, D.W. (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. Journal of the Chemical Society, Faraday Transactions I, 84:4249–4260. doi:10.1039/f19888404249
  • Witten, T., Rubinstein, M., and Colby., R. (1993) Reinforcement of rubber by fractal aggregates. Journal De Physique II, 3:367–383. doi:10.1051/jp2:1993138
  • Klüppel, M., and Heinrich, G. (1995) Fractal structures in carbon black reinforced rubbers. Rubber Chemistry and Technology, 68. doi:10.5254/1.3538763
  • Hentschke, R. (2017) The Payne effect revisited. Express Polymer Letters, 11:278–292. doi:10.3144/expresspolymlett.2017.28
  • Hentschke, R. (2018) Macroscopic mechanical properties of elstomer nano-composites via molecular and analytical modeling. Soft Materials, (this volume) doi:10.1080/1539445X.2018.1518243
  • Long, D., and Sotta, P. (2006) Nonlinear and plastic behavior of soft thermoplastic and filled elastomers Studied by dissipative particle dynamics. Macromolecules, 39:6282–6297. doi:10.1021/ma061306e
  • Merabia, S., Sotta, P., and Long, D.R. (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects). Macromolecules, 41:8252–8266. doi:10.1021/ma702128a
  • Raos, G., and Casalegno, M. (2011) Nonequilibrium simulations of filled polymer networks: searching for the origins of reinforcement and nonlinearity. The Journal of Chemical Physics, 134:054902. doi:10.1063/1.3537971
  • Xi, H., and Hentschke, R. (2014) The influence of structure on mechanical properties of filler networks via coarse-grained modeling. Macromolecular Theory and Simulation, 23:373–382. doi:10.1002/mats.201400009
  • Brown, D., Marcadon, V., Mélé, P., and Albérola, N. (2008) Effect of filler particle size on the properties of model nanocomposites. Macromolecules, 41:1499–1511. doi:10.1021/ma702128a
  • Ndoro, T.V.M., Böhm, M.C., and Müller-Plathe, F. (2012) Interface and interphase dynamics of polystyrene chains near grafted and ungrafted silica nanoparticles. Macromolecules, 45:171–179. doi:10.1021/ma2020613
  • Guseva, D.V., Komarov, P.V., and Lyulin, A.V. (2014) Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates. The Journal of Chemical Physics, 140:114903. doi:10.1063/1.4868231
  • Riggleman, R.A., Toepperwein, G., Papakonstantopoulos, G.J., Barrat, J.-L., and de Pablo, J.J. (2009) Entanglement network in nanoparticle reinforced polymers. The Journal of Chemical Physics, 130:244903. doi:10.1063/1.3148026
  • Jaber, E., Luo, H., Li, W., and Gersappe, D. (2011) Network formation in polymer nanocomposites under shear. Soft Matter, 7:3852–3860. doi:10.1039/c0sm00990c
  • Kalathi, J.T., Grest, G.S., and Kumar, S.K. (2012) Universal viscosity behavior of polymer nanocomposites. Physical Review Letters, 109:198301. doi:10.1103/PhysRevLett.109.198301
  • Chen, Y., Liu, L., Yang, Q., Wen, S., Zhang, L., and Zhong, C. (2013) Computational study of nanoparticle dispersion and spatial distribution in polymer matrix under oscillatory shear flow. Langmuir, 29:13932–13942. doi:10.1021/la4028496
  • Meyer, J., Hentschke, R., Hager, J., Hojdis, N.W., and Karimi-Varzaneh, H.A. (2017) A nano-mechnical instability as primary contribution to rolling resistance. Scientific Reports, 7:11275. doi:10.1038/s41598-017-11728-6
  • Meyer, J., Hentschke, R., Hager, J., Hojdis, N.W., and Karimi-Varzaneh, H.A. (2017) Molecular simulation of viscous dissipation due to cyclic deformation of silica-silica contact in filled rubber. Macromolecules, 50:6679–6689. doi:10.1021/acs.macromol.7b00947
  • Bak, P., and Chen., K. (1989) The physics of fractals. Physica D. Nonlinear Phenomena, 38:5–12. doi:10.1016/0167-2789(89)90166-8
  • Stöckelhuber, K.W., Wießner, S., Das, A., and Heinrich, G. (2017) Filler flocculation in polymers - a simplified model derived from thermodynamics and game theory. Soft Matter, 13:3701–3709. doi:10.1039/C6SM02694J
  • Stöckelhuber, K.W., Das, A., Jurk, R., and Heinrich, G. (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer, 51:1954–1963. doi:10.1016/j.polymer.2010.03.013
  • Stöckelhuber, K.W., Svistkov, A.S., Pelevin, A.G., and Heinrich, G. (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 44:4366–4381. doi:10.1021/ma1026077
  • Natarajan, B., Li, Y., Deng, H., Brinson, L.C., and Schadler, L.S. (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules, 46:2833–2841. doi:10.1021/ma302281b
  • Gundlach, N., and Hentschke, R. (2018) Modelling filler dispersion in elastomers: relating filler morphology to interface free energies via SAXS and TEM simulation studies. Polymers, 10:446–461. doi:10.3390/polym10040446
  • Glandorff, P., and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley and Sons: London.
  • Hess, W.M., Herd, C.R., and Vegvari, P.G. (1993) Chracterization of immiscible elastomer blends. Rubber Chemistry and Technology, 66:329–375. doi:10.5254/1.3538316
  • Wunde, W., and Klüppel, M. (2017) Impact of mixing procedure on phase morphology and fracture mechanical properties of carbon black-filled NR/SBR blends. Continuum Mechanics and Thermodynamics, 29:1135–1148. doi:10.1007/s00161-017-0562-1
  • Landau, D.P., and Binder, K. (2000) A Guide to Monte Carlo Simulations in Statistical Physics; Cambridge University Press: Cambridge, UK.
  • Owens, D., and Wendt., R. (1969) Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13:1741–1747. doi:10.1002/app.1969.070130815
  • Fowkes, F.M. (1964) Attractive forces at interfaces. Industrial & Engineering Chemistry, 56:40–52. doi:10.1021/ie50660a008
  • Girifalco, L.A., and Good, R.J. (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. The Journal of Physical Chemistry, 61:904–909. doi:10.1021/j150553a013
  • Good, R.J., Girifalco, L.A., and Kraus, G. (1958) A theory for estimation of interfacial energies. II. Application to surface thermodynamics of teflon and graphite. The Journal of Physical Chemistry, 62:1418–1421. doi:10.1021/j150569a016
  • Good, R.J., and Girifalco, L.A. (1960) A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. The Journal of Physical Chemistry, 64:561–565. doi:10.1021/j100834a012
  • Adamson, A.W. (1990) Physical Chemistry of Surfaces; John Wiley and Sons, Inc.: New York.
  • Klat, D., Karimi-Varzaneh, H.A., and Lacayo-Pineda, J. (2018) Phase morphology of NR/SBR blends: effect of curing temperature and curing time. Polymers, 10:510. doi:10.3390/polym10050510
  • Glatter, O., and Kratky, O., Eds. (1982) Small Angle X-Ray Scattering; Academic Press: NewYork.
  • Guinier, A., and Forunet, G., Eds. (1955) Small-Angle Scattering of X-Rays; John Wiley and Sons, Inc.: New York.
  • Beaucage, G. (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 28:717–728. doi:10.1107/S0021889895005292
  • Baeza, G.P., Genix, A.-C., Degrandcourt, C., Petitjean, L., Gummel, J., Couty, M., and Oberdisse, J. (2013) Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules, 46:317–329. doi:10.1021/ma302248p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.