357
Views
1
CrossRef citations to date
0
Altmetric
Articles

Elastic flexibility of ferroelectric supramolecular co-crystals

, , , ORCID Icon, &
Pages 31-37 | Received 16 Jun 2019, Accepted 06 Aug 2019, Published online: 17 Aug 2019

References

  • Martin, L. W.; Rappe, A. M. Thin-film Ferroelectric Materials and Their Applications. Nat. Rev. Mater. 2016, 2, 16087. DOI: 10.1038/natrevmats.2016.87.
  • Prateek, T. V. K.; Gupta, R. K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116(7), 4260–4317. DOI: 10.1021/acs.chemrev.5b00495.
  • Choi, -Y.-Y.; Sharma, P.; Phatak, C.; Gosztola, D. J.; Liu, Y.; Lee, J.; Lee, B.; Li, J.; Gruverman, A.; Ducharme, S.; et al. Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure. ACS Nano. 2015, 9(2), 1809–1819. DOI: 10.1021/nn5067232.
  • Kang, G.-D.; Cao, Y.-M. Application and Modification of Poly(vinylidene Fluoride) (PVDF) Membranes – A Review. J. Membr. Sci. 2014, 463, 145–165. DOI: 10.1016/j.memsci.2014.03.055.
  • Tayi, A. S.; Shveyd, A. K.; Sue, A. C. H.; Szarko, J. M.; Rolczynski, B. S.; Cao, D.; Kennedy, T. J.; Sarjeant, A. A.; Stern, C. L.; Paxton, W. F.; et al. Room-temperature Ferroelectricity in Supramolecular Networks of Charge-transfer Complexes. Nature. 2012, 488(7412), 485–489. DOI: 10.1038/nature11395.
  • Horiuchi, S.; Kagawa, F.; Hatahara, K.; Kobayashi, K.; Kumai, R.; Murakami, Y.; Tokura, Y. Above-room-temperature Ferroelectricity and Antiferroelectricity in Benzimidazoles. Nat. Commun. 2012, 3, 1308. DOI: 10.1038/ncomms2322.
  • Ye, H.-Y.; Tang, -Y.-Y.; Li, P.-F.; Liao, W.-Q.; Gao, J.-X.; Hua, X.-N.; Cai, H.; Shi, -P.-P.; You, Y.-M.; Xiong, R.-G. Metal-free Three-dimensional Perovskite Ferroelectrics. Science. 2018, 361(6398), 151–155. DOI: 10.1126/science.aas9330.
  • Fu, D.-W.; Cai, H.-L.; Liu, Y.; Ye, Q.; Zhang, W.; Zhang, Y.; Chen, X.-Y.; Giovannetti, G.; Capone, M.; Li, J.; et al. Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal. Science. 2013, 339(6118), 425–428. DOI: 10.1126/science.1229675.
  • Shi, -P.-P.; Tang, -Y.-Y.; Li, P.-F.; Liao, W.-Q.; Wang, Z.-X.; Ye, Q.; Xiong, R.-G. Symmetry Breaking in Molecular Ferroelectrics. Chem. Soc. Rev. 2016, 45(14), 3811–3827. DOI: 10.1039/c5cs00308c.
  • Ghosh, S.; Reddy, C. M. Elastic and Bendable Caffeine Cocrystals: Implications for the Design of Flexible Organic Materials. Angew. Chem. Int. Ed. 2012, 51(41), 10319–10323. DOI: 10.1002/anie.201204604.
  • Ghosh, S.; Mishra, M. K.; Kadambi, S. B.; Ramamurty, U.; Desiraju, G. R. Designing Elastic Organic Crystals: Highly Flexible Polyhalogenated N-Benzylideneanilines. Angew. Chem. Int. Ed. 2015, 54(9), 2674–2678. DOI: 10.1002/anie.201410730.
  • Hayashi, S.; Koizumi, T. Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule. Angew. Chem. 2016, 128(8), 2751–2754. DOI: 10.1002/ange.201509319.
  • Owczarek, M.; Hujsak, K. A.; Ferris, D. P.; Prokofjevs, A.; Majerz, I.; Szklarz, P.; Zhang, H.; Sarjeant, A. A.; Stern, C. L.; Jakubas, R.; Hong, S.; Dravid, V. P.; Stoddart, J. F. Flexible Ferroelectric Organic Crystals. Nat. Mater. 2016, 7, 13108. DOI: 10.1038/ncomms13108.
  • Brock, A. J.; Whittaker, J. J.; Powell, J. A.; Pfrunder, M. C.; Grosjean, A.; Parsons, S.; McMurtrie, J. C.; Clegg, J. K. Elastically Flexible Crystals Have Disparate Mechanisms of Molecular Movement Induced by Strain and Heat. Angew. Chem. Int. Ed. 2018, 57(35), 11325–11328. DOI: 10.1002/anie.201806431.
  • Ahmed, E.; Karothu, D. P.; Naumov, P. Crystal Adaptronics: Mechanically Reconfigurable Elastic and Superelastic Molecular Crystals. Angew. Chem. Int. Ed. 2018, 57(29), 8837–8846. DOI: 10.1002/anie.201800137.
  • Worthy, A.; Grosjean, A.; Pfrunder, M. C.; Xu, Y.; Yan, C.; Edwards, G.; Clegg, J. K.; McMurtrie, J. C. Atomic Resolution of Structural Changes in Elastic Crystals of copper(II) Acetylacetonate. Nat. Chem. 2017, 10, 65. DOI: 10.1038/nchem.2848.
  • Takamizawa, S.; Miyamoto, Y. Superelastic Organic Crystals. Angew. Chem. Int. Ed. 2014, 53(27), 6970–6973. DOI: 10.1002/anie.201311014.
  • Horiuchi, S.; Ishii, F.; Kumai, R.; Okimoto, Y.; Tachibana, H.; Nagaosa, N.; Tokura, Y. Ferroelectricity near Room Temperature in Co-crystals of Nonpolar Organic Molecules. Nat. Mater. 2005, 4(2), 163–166. DOI: 10.1038/nmat1298.
  • Tayi, A. S.; Kaeser, A.; Matsumoto, M.; Aida, T.; Stupp, S. I. Supramolecular Ferroelectrics. Nat. Chem. 2015, 7(4), 281–294. DOI: 10.1038/nchem.2206.
  • Horiuchi, S.; Kumai, R.; Tokura, Y. Hydrogen-Bonding Molecular Chains for High-Temperature Ferroelectricity. Adv. Mater. 2011, 23(18), 2098–2103. DOI: 10.1002/adma.201100359.
  • Noohinejad, L.; Mondal, S.; Wölfel, A.; Ali, S. I.; Schönleber, A.; van Smaalen, S. Ferroelectricity of Phenazine–Chloranilic Acid at T=100 K. J. Chem. Crystallogr. 2014, 44(8), 387–393. DOI: 10.1007/s10870-014-0527-1.
  • Noohinejad, L.; Mondal, S.; Ali, S. I.; Dey, S.; van Smaalen, S.; Schonleber, A. Resonance-stabilized Partial Proton Transfer in Hydrogen Bonds of Incommensurate Phenazine-chloranilic Acid. Acta Crystallog. Sect. B: Struct. Sci. 2015, 71(2), 228–234. DOI: 10.1107/S2052520615004084.
  • Sheldrick, G.;. A Short History of SHELX. Acta Cryst. A. 2008, 64(1), 112–122. DOI: 10.1107/S0108767307043930.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42(2), 339–341. DOI: 10.1107/S0021889808042726.
  • Tothadi, S.; Joseph, S.; Desiraju, G. R. Synthon Modularity in Cocrystals of 4-bromobenzamide with n-Alkanedicarboxylic Acids: Type I and Type II Halogen···Halogen Interactions. Cryst. Growth Des. 2013, 13(7), 3242–3254. DOI: 10.1021/cg400735f.
  • Ramasubbu, N.; Parthasarathy, R.; Murray-Rust, P. Angular Preferences of Intermolecular Forces around Halogen Centers: Preferred Directions of Approach of Electrophiles and Nucleophiles around Carbon-halogen Bond. J. Am. Chem. Soc. 1986, 108(15), 4308–4314. DOI: 10.1021/ja00275a012.
  • Desiraju Gautam, R.; Ho, P. S.; Kloo, L.; Legon Anthony, C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85(8), 1711–1713.
  • Li, W.-H.; Li, X.-Y.; Yu, N.-T. Surface-enhanced hyper-Raman Scattering and Surface-enhanced Raman Scattering Studies of Electroreduction of Phenazine on Silver Electrode. Chem. Phys. Lett. 2000, 327(3), 153–161. DOI: 10.1016/S0009-2614(00)00852-6.
  • Pawlukojć, A.; Sobczyk, L.; Prager, M.; Bator, G.; Grech, E.; Nowicka-Scheibe, J. DFT Calculations of 2,6-dimethylpyrazine (26DMP) and Its Complex with Chloranilic Acid (CLA): Comparison to INS, IR and Raman Vibration Spectra. J. Mol. Struct. 2008, 892(1), 261–267. DOI: 10.1016/j.molstruc.2008.05.038.
  • Pawlukojć, A.; Bator, G.; Sobczyk, L.; Grech, E.; Nowicka-Scheibe, J. Inelastic Neutron Scattering, Raman, Infrared and DFT Theoretical Studies on Chloranilic Acid. J. Phys. Org. Chem. 2003, 16(10), 709–714. DOI: 10.1002/poc.633.
  • Łuczyńska, K.; Drużbicki, K.; Lyczko, K.; Dobrowolski, J. C. Experimental (x-ray, 13C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-dimethylpyrazine. J. Phys. Chem. B. 2015, 119(22), 6852–6872. DOI: 10.1021/acs.jpcb.5b03279.
  • Panda, M. K.; Ghosh, S.; Yasuda, N.; Moriwaki, T.; Mukherjee, G. D.; Reddy, C. M.; Naumov, P. Spatially Resolved Analysis of Short-range Structure Perturbations in a Plastically Bent Molecular Crystal. Nat. Chem. 2015, 7, 65. DOI: 10.1038/nchem.2123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.