381
Views
5
CrossRef citations to date
0
Altmetric
Articles

Supramolecular self-assembly of oleylamide into organogels and hydrogels: a simple approach in phase selective gelation of oil spills

ORCID Icon, , , &
Pages 55-66 | Received 27 Jul 2019, Accepted 22 Oct 2019, Published online: 01 Nov 2019

References

  • Wang, -M.-M.; Zheng, Y.-J.; Jing, T.; Tian, J.-Z.; Chen, P.-S.; Dong, M.-Y.; Wang, C.; Yan, C.; Liu, C.; Ding, T. Component Determination and Their Formation of PM2. 5. Sci. Adv. Mater. 2019, 11(5), 756–763. DOI: 10.1166/sam.2019.3526.
  • Lou, C.; Jing, T.; Tian, J.; Zheng, Y.; Zhang, J.; Dong, M.; Wang, C.; Hou, C.; Fan, J.; Guo, Z. 3-dimensional graphene/Cu/Fe 3 O 4 Composites: Immobilized Laccase Electrodes for Detecting Bisphenol A. J. Mater. Res. 2019, 34(17), 2964–2975. DOI: 10.1557/jmr.2019.248.
  • Eftekhari-Sis, B.; Rezazadeh, Z.; Akbari, A.; Amini, M. 8-hydroxyquinoline Functionalized Graphene Oxide: An Efficient Fluorescent Nanosensor for Zn 2+ in Aqueous Media. J. Fluoresc. 2018, 28(5), 1173–1180. DOI: 10.1007/s10895-018-2281-9.
  • Eftekhari-Sis, B.; Samadneshan, K.; Vahdati-Khajeh, S. Design and Synthesis of Nanosensor Based on CdSe Quantum Dots Functionalized with 8-hydroxyquinoline: A Fluorescent Sensor for Detection of Al 3+ in Aqueous Solution. J. Fluoresc. 2018, 28(3), 767–774. DOI: 10.1007/s10895-018-2238-z.
  • Eftekhari-Sis, B.; Malekan, F.; Younesi Araghi, H. CdSe Quantum Dots Capped with P-nitrophenyldiazenylphenyloxadiazole: A Nanosensor for Cd2+ Ions in Aqueous Media. Can. J. Chem. 2018, 96(4), 371–376. DOI: 10.1139/cjc-2017-0478.
  • Eftekhari-Sis, B.; Mirdoraghi, S. Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media. Nanochem Res. 2016, 1(2), 214–221.
  • Shi, X.; Wang, C.; Ma, Y.; Liu, H.; Wu, S.; Shao, Q.; He, Z.; Guo, L.; Ding, T.; Guo, Z. Template-free Microwave-assisted Synthesis of FeTi Coordination Complex Yolk-shell Microspheres for Superior Catalytic Removal of Arsenic and Chemical Degradation of Methylene Blue from Polluted Water; Powder Technology, 2019, 726–734.
  • Pan, D.; Ge, S.; Zhao, J.; Tian, J.; Shao, Q.; Guo, L.; Mai, X.; Wu, T.; Murugadoss, V.; Liu, H. Synthesis and Characterization of ZnNiIn Layered Double Hydroxides Derived Mixed Metal Oxides with Highly Efficient Photoelectrocatalytic Activities. Ind. Eng. Chem. Res. 2018, 58(2), 836–848. DOI: 10.1021/acs.iecr.8b04829.
  • Tian, J.; Shao, Q.; Zhao, J.; Pan, D.; Dong, M.; Jia, C.; Ding, T.; Wu, T.; Guo, Z. Microwave Solvothermal Carboxymethyl Chitosan Templated Synthesis of TiO2/ZrO2 Composites toward Enhanced Photocatalytic Degradation of Rhodamine B. J. Colloid Interface Sci. 2019, 541, 18–29. DOI: 10.1016/j.jcis.2019.01.069.
  • Yang, P.; Yang, L.; Gao, Q.; Luo, Q.; Zhao, X.; Mai, X.; Fu, Q.; Dong, M.; Wang, J.; Hao, Y. Anchoring Carbon Nanotubes and Post-hydroxylation Treatment Enhanced Ni Nanofiber Catalysts Towards Efficient Hydrous Hydrazine Decomposition for Effective Hydrogen Generation. Chem. Commun. 2019, 55(61), 9011–9014. DOI: 10.1039/C9CC04559G.
  • Yuan, Y.; Yu, Q.; Wen, J.; Li, C.; Guo, Z.; Wang, X.; Wang, N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel-like Spidroin-based Protein Fiber. Angew. Chem. Int. Ed. 2019, 58(34), 11785–11790. DOI: 10.1002/anie.201906191.
  • Zhao, S.; Yuan, Y.; Yu, Q.; Niu, B.; Liao, J.; Guo, Z.; Wang, N. Dual-surface Amidoximated Halloysite Nanotube for High-efficient and Economical Uranium Extraction from Seawater; Angewandte Chemie, 2019, 14979–14985.
  • Yuan, Y.; Yu, Q.; Yang, S.; Wen, J.; Guo, Z.; Wang, X.; Wang, N. Ultrafast Recovery of Uranium from Seawater by Bacillus Velezensis Strain UUS-1 with Innate Anti‐Biofouling Activity. Adv Sci. 2019, 1900961. doi:10.1002/advs.201900961.
  • Padervand, M.; Asgarpour, F.; Akbari, A.; Sis, B. E.; Lammel, G. Hexagonal Core–Shell SiO 2 [–MOYI] cl–] Ag Nanoframeworks for Efficient Photodegradation of the Environmental Pollutants and Pathogenic Bacteria. J. Inorg. Organomet. Polym. Mater. 2019, 29(4), 1314–1323. DOI: 10.1007/s10904-019-01095-2.
  • Luo, X.; Pan, Z.; Pei, F.; Jin, Z.; Miao, K.; Yang, P.; Qian, H.; Chen, Q.; Feng, G. In Situ Growth of Hollow Cu2O Spheres Using Anionic Vesicles as Soft Templates. J. Ind. Eng. Chem. 2018, 59, 410–415. DOI: 10.1016/j.jiec.2017.10.052.
  • Zhang, M.; Meng, J.; Liu, Q.; Gu, S.; Zhao, L.; Dong, M.; Zhang, J.; Hou, H.; Guo, Z. Corn Stover–Derived Biochar for Efficient Adsorption of Oxytetracycline from Wastewater. J. Mater. Res. 2019, 34(17), 3050–3060.
  • Pan, D.; Ge, S.; Tian, J.; Shao, Q.; Guo, L.; Liu, H.; Wu, S.; Ding, T.; Guo, Z. Research Progress in the Field of Adsorption and Catalytic Degradation of Sewage by Hydrotalcite‐Derived Materials; The Chemical Record, 2019. DOI: 10.1002/tcr.201900046
  • Huang, C.; Shi, X.; Wang, C.; Guo, L.; Dong, M.; Hu, G.; Lin, J.; Ding, T.; Guo, Z. Boosted Selectivity and Enhanced Capacity of as (V) Removal from Polluted Water by Triethylenetetramine Activated Lignin-based Adsorbents. Int. J. Biol. Macromol. 2019, 140, 1167–1174. DOI: 10.1016/j.ijbiomac.2019.08.230.
  • Qian, Y.; Yuan, Y.; Wang, H.; Liu, H.; Zhang, J.; Shi, S.; Guo, Z.; Wang, N. Highly Efficient Uranium Adsorption by salicylaldoxime/polydopamine Graphene Oxide Nanocomposites. J. Mater. Chem. A. 2018, 6(48), 24676–24685. DOI: 10.1039/C8TA09486A.
  • Li, S.; Yang, P.; Liu, X.; Zhang, J.-X.; Liu, C.; Xie, W.; Wang, C.; Guo, Z. Graphene Oxide Based Dopamine Mussel-like Cross-linked Polyethylene Imine Nanocomposite Coating with Enhanced Hexavalent Uranium Adsorption; Journal of Materials Chemistry A, 2019, 7, 16902–16911.
  • Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R. Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible Magnetic N-rich Activated Carbon from Egg White Biomass and Sucrose: Preparation, Characterization and Investigation of Dye Adsorption Capacity from Aqueous Solution. Surf. Interfaces. 2019, 15, 157–165. DOI: 10.1016/j.surfin.2019.03.003.
  • Bahrami, Z.; Akbari, A.; Eftekhari-Sis, B. Double Network Hydrogel of Sodium alginate/polyacrylamide Cross-linked with POSS: Swelling, Dye Removal and Mechanical Properties. Int. J. Biol. Macromol. 2019, 129, 187–197. DOI: 10.1016/j.ijbiomac.2019.02.046.
  • Eftekhari-Sis, B.; Akbari, A.; Motlagh, P. Y.; Bahrami, Z.; Arsalani, N. Dye Adsorption on Cubic Polyhedral Oligomeric silsesquioxane-Based Poly (Acrylamide-co-itaconic acid) Hybrid Nanocomposites: Kinetic. Thermodynamic and Isotherms Studies. J Inorg Organomet Polym Mater. 2018, 28(5), 1728–1738. DOI: 10.1007/s10904-018-0820-0.
  • Eftekhari-Sis, B.; Rahimkhoei, V.; Akbari, A.; Araghi, H. Y. Cubic Polyhedral Oligomeric Silsesquioxane Nano-cross-linked Hybrid Hydrogels: Synthesis, Characterization, Swelling and Dye Adsorption Properties. React. Funct. Polym. 2018, 128, 47–57. DOI: 10.1016/j.reactfunctpolym.2018.05.002.
  • Zirak, M.; Abdollahiyan, A.; Eftekhari-Sis, B.; Saraei, M. Carboxymethyl Cellulose Coated Fe 3 O 4@ SiO 2 Core–Shell Magnetic Nanoparticles for Methylene Blue Removal: Equilibrium, Kinetic, and Thermodynamic Studies. Cellulose. 2018, 25(1), 503–515. DOI: 10.1007/s10570-017-1590-5.
  • Mendes, A. C.; Baran, E. T.; Reis, R. L.; Azevedo, H. S. Self-assembly in Nature: Using the Principles of Nature to Create Complex Nanobiomaterials. Wiley Interdiscip Rev. 2013, 5(6), 582–612. DOI: 10.1002/wnan.1238.
  • Izzet, G.; Abécassis, B.; Brouri, D.; Piot, M.; Matt, B.; Serapian, S. A.; Bo, C.; Proust, A. Hierarchical Self-assembly of Polyoxometalate-based Hybrids Driven by Metal Coordination and Electrostatic Interactions: From Discrete Supramolecular Species to Dense Monodisperse Nanoparticles. J. Am. Chem. Soc. 2016, 138(15), 5093–5099. DOI: 10.1021/jacs.6b00972.
  • Sao, S.; Mukherjee, I.; De, P.; Chaudhuri, D. Encapsulation Induced Aggregation: A Self-assembly Strategy for Weakly Pi-stacking Chromophores. Chem. Commun. 2017, 53(28), 3994–3997. DOI: 10.1039/C7CC00554G.
  • Das, A.; Ghosh, S. Stimuli-Responsive Self-Assembly of a Naphthalene Diimide by Orthogonal Hydrogen Bonding and Its Coassembly with a Pyrene Derivative by a Pseudo-Intramolecular Charge-Transfer Interaction. Angew. Chem. Int. Ed. 2014, 53(4), 1092–1097. DOI: 10.1002/anie.201308396.
  • Wei, P.; Yan, X.; Huang, F. Supramolecular Polymers Constructed by Orthogonal Self-assembly Based on Host–Guest and Metal–Ligand Interactions. Chem. Soc. Rev. 2015, 44(3), 815–832. DOI: 10.1039/C4CS00327F.
  • Okesola, B. O.; Smith, D. K. Applying Low-molecular Weight Supramolecular Gelators in an Environmental Setting–Self-assembled Gels as Smart Materials for Pollutant Removal. Chem. Soc. Rev. 2016, 45(15), 4226–4251. DOI: 10.1039/C6CS00124F.
  • Más-Montoya, M.; Janssen, R. A. The Effect of H-And J-Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene–Pyridine–DPP Molecules for Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2017, 27(16), 1605779. DOI: 10.1002/adfm.201605779.
  • Cheetham, A. G.; Zhang, P.; Lin, Y.-A.; Lock, L. L.; Cui, H. Supramolecular Nanostructures Formed by Anticancer Drug Assembly. J. Am. Chem. Soc. 2013, 135(8), 2907–2910. DOI: 10.1021/ja3115983.
  • Webber, M. J.; Langer, R. Drug Delivery by Supramolecular Design. Chem. Soc. Rev. 2017, 46(21), 6600–6620. DOI: 10.1039/C7CS00391A.
  • Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of Environment‐sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles that are Responsive to Intracellular pH Change. Angewandte Chemie. 2003, 115(38), 4788–4791. DOI: 10.1002/(ISSN)1521-3757.
  • Zhao, F.; Yin, H.; Li, J. Supramolecular Self-assembly Forming a Multifunctional Synergistic System for Targeted Co-delivery of Gene and Drug. Biomaterials. 2014, 35(3), 1050–1062. DOI: 10.1016/j.biomaterials.2013.10.044.
  • Zhang, D.; Martinez, A.; Dutasta, J.-P. Emergence of Hemicryptophanes: From Synthesis to Applications for Recognition. Molecular Machines, and Supramolecular Catalysis. Chem Rev. 2017, 117(6), 4900–4942.
  • Breit, B.; Seiche, W. Self-Assembly of Bidentate Ligands for Combinatorial Homogeneous Catalysis Based on an A–T Base-Pair Model. Angew. Chem. Int. Ed. 2005, 44(11), 1640–1643. DOI: 10.1002/(ISSN)1521-3773.
  • Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J. Functional Supramolecular Polymers for Biomedical Applications. Adv.Mate. 2015, 27(3), 498–526. DOI: 10.1002/adma.v27.3.
  • Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C. L.; Kachurin, A.; Church, K. H.; Park, H.; Mironov, V. Tissue Engineering by Self-assembly of Cells Printed into Topologically Defined Structures. Tissue Engin Part A. 2008, 14(3), 413–421. DOI: 10.1089/tea.2007.0173.
  • Jakab, K.; Norotte, C.; Marga, F.; Murphy, K.; Vunjak-Novakovic, G.; Forgacs, G. Tissue Engineering by Self-assembly and Bio-printing of Living Cells. Biofabrication. 2010, 2(2), 022001. DOI: 10.1088/1758-5082/2/2/022001.
  • Samorì, P.; Biscarini, F. Nanomaterials Properties Tuned by Their Environment: Integrating Supramolecular Concepts into Sensing Devices. Chem. Soc. Rev. 2018, 47(13), 4675–4676. DOI: 10.1039/C8CS90066C.
  • Nishizawa, S.; Kato, Y.; Teramae, N. Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-induced Self-assembly of a Pyrene-functionalized Guanidinium Receptor. J. Am. Chem. Soc. 1999, 121(40), 9463–9464. DOI: 10.1021/ja991497j.
  • Bhattacharya, S.; Pal, A. Physical Gelation of Binary Mixtures of Hydrocarbons Mediated by n-lauroyl-L-alanine and Characterization of Their Thermal and Mechanical Properties. J. Phys. Chem. B. 2008, 112(16), 4918–4927. DOI: 10.1021/jp7104715.
  • Bhattacharya, S.; Krishnan-Ghosh, Y. (2001) First Report of Phase Selective Gelation of Oil from oil/water Mixtures. Possible implications toward containing oil spills. Chem. Commun. 2001(2), 185–186
  • Jadhav, S. R.; Vemula, P. K.; Kumar, R.; Raghavan, S. R.; John, G. Sugar-derived Phase-selective Molecular Gelators as Model Solidifiers for Oil Spills. Angew. Chem. Int. Ed. 2010, 49(42), 7695–7698. DOI: 10.1002/anie.v49:42.
  • Kar, T.; Debnath, S.; Das, D.; Shome, A.; Das, P. Organogelation and Hydrogelation of Low-molecular-weight Amphiphilic Dipeptides: PH Responsiveness in Phase-selective Gelation and Dye Removal. Langmuir. 2009, 25(15), 8639–8648. DOI: 10.1021/la804235e.
  • Chatterjee, D.; Paul, A.; Banerjee, S.; Yadav, S. Enantiomeric Organogelators from D-/L-arabinose for Phase Selective Gelation of Crude Oil and Their Gel as a Photochemical Micro-reactor. Chem. Commun. 2014, 50(81), 12131–12134. DOI: 10.1039/C4CC05950F.
  • Mukherjee, S.; Mukhopadhyay, B. Phase Selective Carbohydrate Gelator. RSC Adv. 2012, 2(6), 2270–2273. DOI: 10.1039/c2ra00036a.
  • Konda, M.; Maity, I.; Rasale, D. B.; Das, A. K. A New Class of Phase-Selective Synthetic β-Amino Acid Based Peptide Gelator: From Mechanistic Aspects to Oil Spill Recovery. ChemPlusChem. 2014, 79(10), 1482–1488. DOI: 10.1002/cplu.201402120.
  • Sarma, D. S.; Palanisamy, A. Self-assembly of Aromatic Biscarbamate Gelators: Effect of Spacer Length on the Gelation and Rheology. J. Sol-Gel Sci. Technol. 2016, 79(3), 637–649. DOI: 10.1007/s10971-016-4036-x.
  • Hestand, N. J.; Spano, F. C. Expanded Theory of H-And J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer; Chemical reviews, 2018, 118(15), 7069–7163.
  • Cao, X.; Ding, Q.; Zhao, N.; Gao, A.; Jing, Q. Supramolecular Self-assembly System Based on Naphthalimide Boric Acid Ester Derivative for Detection of Organic Amine. Sens. Actuators B Chem. 2018, 256, 711–720. DOI: 10.1016/j.snb.2017.09.210.
  • Cao, X.; Ding, Q.; Gao, A.; Lv, H.; Zhao, N.; Liu, D. Regulation Gel Formation, Hierarchical Structures and Surface Wettability via Isomeride Effect in Supramolecular Organogel System. J. Colloid Interface Sci. 2017, 494, 170–177. DOI: 10.1016/j.jcis.2017.01.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.