237
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Aggregation and pressure effects of asphaltene and resin molecules at oil–water interfaces: a coarse-grained molecular dynamics and free energy study

&
Pages 113-127 | Received 27 Aug 2019, Accepted 31 Oct 2019, Published online: 13 Nov 2019

References

  • Butler, R. M. Thermal Recovery of Oil and Bitumen; Prentice Hall Inc: Old, Tappan, New Jersey, 1991.
  • Lake, L. W.; Johns, R.; Rossen, W.; Pope, G.; et al. Fundamentals of Enhanced Oil Recovery. Soc. Pet. Eng. 2014. Richardson, TX.
  • Thomas, S. Enhanced Oil Recovery-an Overview. Oil Gas Sci. Technol. 2008, 63(1), 9–19. DOI: 10.2516/ogst:2007060.
  • Brochu, C.; Pelletier, E.; Caron, G.; Desnoyers, J. E.; et al. Dispersion of Crude Oil in Seawater: The Role of Synthetic Surfactants. Oil Chem. Pollut. 1987, 3(4), 257–279.
  • Brandvik, P. J.; Daling, P. S. Optimisation of Oil Spill Dispersant Composition by Mixture Design and Response Surface Methods. Chemom. Intell. Lab. Syst. 1998, 42(1), 63–72. DOI: 10.1016/S0169-7439(98)00009-4.
  • Aske, N.; Kallevik, H.; Sjöblom, J. Determination of Saturate, Aromatic, Resin, and Asphaltenic (SARA) Components in Crude Oils by Means of Infrared and Near-infrared Spectroscopy. Energy Fuels. 2001, 15(5), 1304–1312. DOI: 10.1021/ef010088h.
  • Mansoori, G. A.; Vazquez, D.; Shariaty-Niassar, M. Polydispersity of Heavy Organics in Crude Oils and Their Role in Oil Well Fouling. J. Pet. Sci. Eng. 2007, 58(3), 375–390. DOI: 10.1016/j.petrol.2006.10.013.
  • Simanzhenkov, V.; Idem, R. Crude Oil Chemistry; Boca Raton, FL: CRC Press, 2003.
  • Shi, Q.; Hou, D.; Chung, K. H.; Xu, C.; Zhao, S.; Zhang, Y.; et al. Characterization of Heteroatom Compounds in a Crude Oil and Its Saturates, Aromatics, Resins, and Asphaltenes (SARA) and Non-basic Nitrogen Fractions Analyzed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels. 2010, 24(4), 2545–2553.
  • Langevin, D.; Poteau, S.; Hénaut, I.; Argillier, J. F.; et al. Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation. Oil Gas Sci. Technol. 2004, 59(5), 511–521.
  • Siskin, M.; Kelemen, S.; Eppig, C.; Brown, L. D.;  Afeworki, M.; et al. Asphaltene Molecular Structure and Chemical Influences on the Morphology of Coke Produced in Delayed Coking. Energy Fuels. 2006, 20(3), 1227–1234.
  • Zhao, S.; Kotlyar, L. S.; Sparks, B. D.; Woods, J. R; Gao, J.; Chung, K. H.; et al. Solids Contents, Properties and Molecular Structures of Asphaltenes from Different Oilsands. Fuel. 2001, 80(13), 1907–1914.
  • Boek, E. S.; Yakovlev, D. S.; Headen, T. F. Quantitative Molecular Representation of Asphaltenes and Molecular Dynamics Simulation of Their Aggregation†. Energy Fuels. 2009, 23(3), 1209–1219. DOI: 10.1021/ef800876b.
  • Tchoukov, P.; Yang, F.; Xu, Z.; Dabros, T.; Czarnecki, J.; Sjöblom, J.; et al. Role of Asphaltenes in Stabilizing Thin Liquid Emulsion Films. Langmuir. 2014, 30(11), 3024–3033.
  • Cherney, D. P.; Wu, C.; Thorman, R. M.; Hegner, J. L.; Yeganeh, M. S.; Ferrughelli, D.; Ulysse, E.; et al. Investigating the Impact of Crude Oil Solubility on Water-in-Oil Emulsion Stability and Its Relation to Molecular Composition of Crude Oil at the Oil–Water Interface. Energy Fuels. 2015, 29(6), 3616–3625.
  • Mikami, Y.; Liang, Y.; Matsuoka, T.; Boek, E.S.; et al. Molecular Dynamics Simulations of Asphaltenes at the Oil–Water Interface: From Nanoaggregation to Thin-film Formation. Energy Fuels. 2013, 27(4), 1838–1845.
  • Ruiz-Morales, Y.; Mullins, O. C. Coarse-Grained Molecular Simulations to Investigate Asphaltenes at the Oil–Water Interface. Energy Fuels. 2015, 29(3), 1597–1609. DOI: 10.1021/ef502766v.
  • Kuznicki, T.; Masliyah, J. H.; Bhattacharjee, S. Molecular Dynamics Study of Model Molecules Resembling Asphaltene-like Structures in Aqueous Organic Solvent Systems. Energy Fuels. 2008, 22(4), 2379–2389. DOI: 10.1021/ef800057n.
  • Kuznicki, T.; Masliyah, J. H.; Bhattacharjee, S. Aggregation and Partitioning of Model Asphaltenes at Toluene− Water Interfaces: Molecular Dynamics Simulations. Energy Fuels. 2009, 23(10), 5027–5035. DOI: 10.1021/ef9004576.
  • Liu, J.; Zhao, Y.; Ren, S. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels. 2015February19, 29(2), 1233–1242. DOI: 10.1021/ef5019737.
  • Czarnecki, J.; Tchoukov, P.; Dabros, T. Possible Role of Asphaltenes in the Stabilization of Water-in-crude Oil Emulsions. Energy Fuels. 2012, 26(9), 5782–5786. DOI: 10.1021/ef300904a.
  • Wu, X.; Czarnecki, J.; Hamza, N.; Masliyah, J.; et al. Interaction Forces between Bitumen Droplets in Water. Langmuir. 1999, 15(16), 5244–5250.
  • Varadaraj, R.; Brons, C. Molecular Origins of Heavy Oil Interfacial Activity Part 1: Fundamental Interfacial Properties of Asphaltenes Derived from Heavy Crude Oils and Their Correlation to Chemical Composition. Energy Fuels. 2007, 21(1), 195–198. DOI: 10.1021/ef0604240.
  • Czarnecki, J.; Moran, K. On the Stabilization Mechanism of Water-In-oil Emulsions in Petroleum Systems. Energy Fuels. 2005, 19(5), 2074–2079. DOI: 10.1021/ef0501400.
  • Czarnecki, J. Stabilization of Water in Crude Oil Emulsions. Part 2†. Energy Fuels. 2008, 23(3), 1253–1257. DOI: 10.1021/ef800607u.
  • Yang, F.; Tchoukov, P.; Pensini, E.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z.; et al. Asphaltene Subfractions Responsible for Stabilizing Water-in-crude Oil Emulsions. Part 1: Interfacial Behaviors. Energy Fuels. 2014, 28(11), 6897–6904.
  • Yang, F.; Tchoukov, P.; Dettman, H.; Teklebrhan, R B.; Liu, L.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z.; et al. Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 2: Molecular Representations and Molecular Dynamics Simulations. Energy Fuels. 2015, 29(8), 4783–4794.
  • Stanford, L. A.; Rodgers, R. P.; Marshall, A. G.; Czarnecki, J.;  Wu, X. A.; Taylor, S.; et al. Detailed Elemental Compositions of Emulsion Interfacial Material versus Parent Oil for Nine Geographically Distinct Light, Medium, and Heavy Crude Oils, Detected by Negative-and Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels. 2007, 21(2), 973–981.
  • Tharanivasan, A. K.; Yarranton, H. W.; Taylor, S. D. Asphaltene Precipitation from Crude Oils in the Presence of Emulsified Water. Energy Fuels. 2012, 26(11), 6869–6875. DOI: 10.1021/ef301200v.
  • Alvarez, G.; Poteau, S.; Argillier, J.-F.; Langevin, D.; Salager, J.-L.; et al. Heavy Oil− Water Interfacial Properties and Emulsion Stability: Influence of Dilution. Energy Fuels. 2008, 23(1), 294–299.
  • Headen, T. F.; Boek, E. S.; Skipper, N. T. Evidence for Asphaltene Nanoaggregation in Toluene and Heptane from Molecular Dynamics Simulations†. Energy Fuels. 2009, 23(3), 1220–1229. DOI: 10.1021/ef800872g.
  • Jover, J. F.; Müller, E. A.; Haslam, A. J.; Galindo, A.; Jackson, G.; Toulhoat, H.;  Nieto-Draghi, C.; et al. Aspects of Asphaltene Aggregation Obtained from Coarse-Grained Molecular Modeling. Energy Fuels. February 19, 2015. 29(2), 556–566. DOI: 10.1021/ef502209j.
  • Hansen, J. S.; Lemarchand, C. A.; Nielsen, E.; Dyre, J. C.; Schrøder, T.; et al. Four-component United-atom Model of Bitumen. J. Chem. Phys.2013, 138(9), 094508. DOI: 10.1063/1.4792045.
  • Boek, E. S.; Headen, T. F.; Padding, J. T. Multi-scale Simulation of Asphaltene Aggregation and Deposition in Capillary Flow. Faraday Discuss. 2010, 144, 271–284. DOI: 10.1039/B902305B.
  • Alvarez, F.; Flores, E. A.; Castro, L. V.; Hernández, J. G.;  López, A.;  Vázquez, F.; et al. Dissipative Particle Dynamics (DPD) Study of Crude Oil−Water Emulsions in the Presence of a Functionalized Co-polymer. Energy Fuels. February 17, 2011. 25(2), 562–567. DOI: 10.1021/ef1012038.
  • Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theory Comput. 2014, 10(2), 691–702. DOI: 10.1021/ct4008926.
  • Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. January 18, 2008, 100(2), 020603. DOI: 10.1103/PhysRevLett.100.020603.
  • Yang, X.; Hamza, H.; Czarnecki, J. Investigation of Subfractions of Athabasca Asphaltenes and Their Role in Emulsion Stability. Energy Fuels. 2004, 18(3), 770–777. DOI: 10.1021/ef0301654.
  • Murgich, J.; Abanero, J. A.; Strausz, O. P. Molecular Recognition in Aggregates Formed by Asphaltene and Resin Molecules from the Athabasca Oil Sand. Energy Fuels. 1999, 13(2), 278–286. DOI: 10.1021/ef980228w.
  • Carnahan, N. F.; Salager, J.-L.; Antón, R.; Dávila, A.; et al. Properties of Resins Extracted from Boscan Crude Oil and Their Effect on the Stability of Asphaltenes in Boscan and Hamaca Crude Oils. Energy Fuels. 1999, 13(2), 309–314.
  • Badu, S.; Pimienta, I. S.; Orendt, A. M.; Pugmire, R. J.;  Facelli, J. C.; et al. Modeling of Asphaltenes: Assessment of Sensitivity of 13C Solid State NMR to Molecular Structure. Energy Fuels. 2012, 26(4), 2161–2167.
  • Murgich, J.; Rodríguez, J.; Aray, Y. Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins. Energy Fuels. 1996, 10(1), 68–76. DOI: 10.1021/ef950112p.
  • Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H.; et al. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B. 2007, 111(27), 7812–7824.
  • Martinez, L.; Andrade, R.; Birgin, E. G.; et al. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. October, 2009. 30(13), 2157–2164. PubMed PMID: WOS:000269095700020. DOI: 10.1002/jcc.21224.
  • Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E.; et al. GROMACS 4.5: A High-throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics. April, 2013. 29(7), 845–854. PubMed PMID: WOS:000316695700004;. DOI: 10.1093/bioinformatics/btt055.
  • Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126(1), 014101. DOI: 10.1063/1.2408420.
  • Berendsen, H. J.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.; DiNola A.; Haak J. R.; et al. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81(8), 3684–3690.
  • Hardy, R. J.;. Formulas for Determining Local Properties in Molecular-dynamics Simulations: Shock Waves. J. Chem. Phys. 1982, 76(1), 622–628. DOI: 10.1063/1.442714.
  • Torres-Sánchez, A.; Vanegas, J. M.; Arroyo, M. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. Phys. Rev. Lett. 2015, 114(25), 258102. DOI: 10.1103/PhysRevLett.114.258102.
  • Tchoukov, P.; Czarnecki, J.; Dabros, T. Study of Water-in-oil Thin Liquid Films: Implications for the Stability of Petroleum Emulsions. Colloids Surf., A. 2010, 372(1), 15–21. DOI: 10.1016/j.colsurfa.2010.09.007.
  • Fenistein, D.; Barré, L.; Broseta, D.; Espinat, D.; Livet, A.; Roux, J.-N.; Scarsella, M.; Viscosimetric and Neutron Scattering Study of Asphaltene Aggregates in Mixed toluene/heptane Solvents. Langmuir. 1998, 14(5), 1013–1020.
  • Ese, M. H.; Yang, X.; Sjoblom, J. Film Forming Properties of Asphaltenes and Resins. A Comparative Langmuir-Blodgett Study of Crude Oils from North Sea, European Continent and Venezuela [Article]. Colloid Polym. Sci. September, 1998, 276(9), 800–809. PubMed PMID: WOS:000076444100006; English. DOI: 10.1007/s003960050313.
  • Bardon, C.; Barre, L.; Espinat, D.; Guille, V.; Li, M. H.; Lambard, J.; Ravey, J. C.; Rosenberg, E.; Zemb, T.; et al. The Colloidal Structure of Crude Oils and Suspensions of Asphaltenes and Resins. Fuel Sci. Technol. Int. 1996, 14(1–2), 203–242.
  • Spiecker, P. M.; Gawrys, K. L.; Trail, C. B.; Kilpatrick, P. K.; Effects of Petroleum Resins on Asphaltene Aggregation and Water-in-oil Emulsion Formation. Colloids Surf., A. 2003, 220(1), 9–27.
  • Yen, T. F.;. The Colloidal Aspect of a Macrostructure of Petroleum Asphalt. Fuel Sci. Technol. Int. 1992, 10(4–6), 723–733. DOI: 10.1080/08843759208916018.
  • Mousavi, M.; Abdollahi, T.; Pahlavan, F.; Fini, E. H.; The Influence of Asphaltene-resin Molecular Interactions on the Colloidal Stability of Crude Oil. Fuel. 2016, 183, 262–271. DOI: 10.1016/j.fuel.2016.06.100.
  • Rogel, E.; Carbognani, L. Density Estimation of Asphaltenes Using Molecular Dynamics Simulations. Energy Fuels. 2003, 17(2), 378–386. DOI: 10.1021/ef020200r.
  • Haynes, W. M. CRC Handbook of Chemistry and Physics, 95th ed.; CRC press: Boca Raton, Florida, 2014.
  • Yarranton, H. W.; Alboudwarej, H.; Jakher, R. Investigation of Asphaltene Association with Vapor Pressure Osmometry and Interfacial Tension Measurements. Ind. Eng. Chem. Res. 2000August01, 39(8), 2916–2924. DOI: 10.1021/ie000073r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.