707
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Calculation of the work of adhesion of polyisoprene on graphite by molecular dynamics simulations

, , &
Pages 140-149 | Received 31 Oct 2019, Accepted 01 Dec 2019, Published online: 11 Dec 2019

References

  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.-J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.
  • Ejenstam, L.; Ovaskainen, L.; Rodriguez-Meizoso, I.; Wågberg, L.; Pan, J.; Swerin, A.; Claesson, P. M. The Effect of Superhydrophobic Wetting State on Corrosion Protection - the AKD Example. J. Colloid Interface Sci. 2013, 412(2015), 56–64.
  • Kelleher, S. M.; Habimana, O.; Lawler, J.; O’reilly, B.; Daniels, S.; Casey, E.; Cowley, A. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features. ACS Appl. Mater. Interfaces. 2016, 8(24), 14966–14974.
  • Maccallum, N.; Howell, C.; Kim, P.; Sun, D.; Friedlander, R.; Ranisau, J.; Ahanotu, O.; Lin, J. J.; Vena, A.; Hatton, B.;; et al. Liquid-Infused Silicone as a Biofouling-Free Medical Material the Roles of Hydrophobicity and Hydrophilicity in Bacterial. ACS Biomater. Sci. Eng. 2015, 1, 43–51.
  • Liu, M.; Wang, S.; Jiang, L. Bioinspired Multiscale Surfaces with Special Wettability. MRS. Bull. 2013, 38(5), 375–382.
  • Perera, A. S.; Coppens, M. O. Re-designing Materials for Biomedical Applications: From Biomimicry to Nature-inspired Chemical Engineering. Phil. Trans. Royal Soc. A. 2018, 377(2138), 20180268.
  • Möwes, M. M.; Fleck, F.; Klüppel, M. Effect of Filler Surface Activity and Morphology on Mechanical and Dielectric Properties of Nbr/Graphene Nanocomposites. Rubber Chem. Technol. 2014, 87(1), 70–85.
  • Stöckelhuber, K. W.; Das, A.; Jurk, R.; Heinrich, G. Contribution of Physico-Chemical Properties of Interfaces on Dispersibility, Adhesion and Flocculation of Filler Particles in Rubber. Polymer. 2010, 51(9), 1954–1963.
  • Hager, J.; Hentschke, R.; Hojdis, N. W.; Karimi-Varzaneh, H. A. Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite. Macromolecules. 2015, 48(24), 9039–9049.
  • Gundlach, N.; Hentschke, R.; Karimi-Varzaneh, H. A. Filler Flocculation in Elastomer Blends - an Approach Based on Measured Surface Tensions and Monte Carlo Simulation. Soft Mater. 2019, 17(3), 283–296.
  • Gundlach, N.; Hentschke, R. Modelling Filler Dispersion in Elastomers: Relating Filler Morphology to Interface Free Energies via SAXS and TEM Simulation Studies. Polymers. 2018, 10(4), 446.
  • Adam, N. K.; Livingston, H. K. Contact Angles and Work of Adhesion. Nature. 1958, 182(4628), 128.
  • Leroy, F.; Müller-Plathe, F. Calculation of the Work of Adhesion of Solid-Liquid Interfaces by Molecular Dynamics Simulations. NIC Symp. Jülich (Germany), 2016.
  • Schlangen, L. J. M.; Koopal, L. K.; Cohen Stuart, M. A.; Lyklema, J. Wettability: Thermodynamic Relationships between Vapour Adsorption and Wetting. Colloids Surf. A Physicochem. Eng. Asp. 1994, 89(2–3), 157–167.
  • Van Engers, C. D.; Cousens, N. E. A.; Babenko, V.; Britton, J.; Zappone, B.; Grobert, N.; Perkin, S. Direct Measurement of the Surface Energy of Graphene. Nano Lett. 2017, 17(6), 3815–3821.
  • Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes. J. Phys. Chem. B. 2003, 107(6), 1345–1352.
  • Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Noca, F.; Koumoutsakos, P. Molecular Dynamics Simulation of Contact Angles of Water Droplets in Carbon Nanotubes. Nano Lett. 2001, 1(12), 697–702.
  • Good, R. J.;. Contact Angle, Wetting, and Adhesion: A Critical Review. J. Adhes. Sci. Technol. 1992, 6(12), 1269–1302.
  • Leroy, F.; Dos Santos, D. J. V. A.; Müller-Plathe, F. Interfacial Excess Free Energies of Solid-Liquid Interfaces by Molecular Dynamics Simulation and Thermodynamic Integration. Macromol. Rapid Commun. 2009, 30(9–10), 864–870.
  • Ghoufi, A.; Malfreyt, P.; Tildesley, D. J. Computer Modelling of the Surface Tension of the Gas-Liquid and Liquid-Liquid Interface. Chem. Soc. Rev. 2016, 45(5), 1387–1409.
  • Leroy, F.; Müller-Plathe, F. Solid-Liquid Surface Free Energy of Lennard-Jones Liquid on Smooth and Rough Surfaces Computed by Molecular Dynamics Using the Phantom-Wall Method. J. Chem. Phys. 2010, 133(4), 44110.
  • Leroy, F.; Müller-Plathe, F. Rationalization of the Behavior of Solid− Liquid Surface Free Energy of Water in Cassie and Wenzel Wetting States on Rugged Solid Surfaces at the Nanometer Scale. Langmuir. 2010, 27(2), 637–645.
  • Frédé, F.; Leroy, F.; Müller-Plath, F. Can Continuum Thermodynamics Characterize Wenzel Wetting States of Water at the Nanometer Scale?. J. Chem. Theory Comput. 2012, 8(10), 3724–3732.
  • Leroy, F.; Müller-Plathe, F. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces. Langmuir. 2015, 31(30), 8335–8345.
  • Laird, B. B.; Davidchack, R. L.; Yang, Y.; Asta, M. Determination of the Solid-Liquid Interfacial Free Energy along a Coexistence Line by Gibbs–Cahn Integration. J. Chem. Phys. 2009, 131(11), 114110.
  • Gloor, G. J.; Jackson, G.; Blas, F. J.; De Miguel, E. Test-Area Simulation Method for the Direct Determination of the Interfacial Tension of Systems with Continuous or Discontinuous Potentials. J. Chem. Phys. 2005, 123(13), 134703.
  • D’Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A. Test-Area Surface Tension Calculation of the Graphene-Methane Interface: Fluctuations and Commensurability. J. Chem. Phys. 2017, 146(21), 214112.
  • Kirkwood, J. G.; Buff, F. P. The Statistical Mechanical Theory of Surface Tension. J. Chem. Phys. 1949, 17(3), 338–343.
  • Ghoufi, A.; Malfreyt, P. Mesoscale Modeling of the Water Liquid-Vapor Interface: A Surface Tension Calculation. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2011, 83(5), 1–5.
  • Ghoufi, A.; Goujon, F.; Lachet, V.; Malfreyt, P. Expressions for Local Contributions to the Surface Tension from the Virial Route. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2008, 77(3), 031601.
  • Duque, D.; Vega, L. F. Some Issues on the Calculation of Interfacial Properties by Molecular Simulation. J. Chem. Phys. 2004, 121(17), 8611–8617.
  • Dreher, T.; Lemarchand, C.; Pineau, N.; Bourasseau, E.; Ghoufi, A.; Malfreyt, P. Calculation of the Interfacial Tension of the Graphene-Water Interaction by Molecular Simulations. J. Chem. Phys. 2019, 150(1), 014703.
  • Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N. Calculation of A Solid/liquid Surface Tension: A Methodological Study. J. Chem. Phys. 2018, 148(3), 034702.
  • Shuttleworth, R.;. The Surface Tension of Solids. Proc. Phys. Soc. Sect. A. 1950, 63(5), 444–457.
  • Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 1950, 18(6), 817–829.
  • Tadmor, E. B.; Miller, R. E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques; Cambridge: Cambridge University Press, 2011. DOI: 10.1017/CBO9781139003582.
  • Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theory Comput. 2014, 10(2), 691–702.
  • Marrink, S. J.; De Vries, A. H.; Mark, A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B. 2004, 108(2), 750–760.
  • Hardy, R. J.;. Formulas for Determining Local Properties in Molecular-Dynamics Simulations: Shock Waves. J. Chem. Phys. 1982, 76(1), 622–628.
  • Murdoch, A. I.;. The Motivation of Continuum Concepts and Relations from Discrete Considerations. Q. J. Mech. Appl. Math. 1983, 36(2), 163–187.
  • Sgouros, A. P.; Vogiatzis, G. G.; Kritikos, G.; Boziki, A.; Nikolakopoulou, A.; Liveris, D.; Theodorou, D. N. Molecular Simulations of Free and Graphite Capped Polyethylene Films: Estimation of the Interfacial Free Energies. Macromolecules. 2017, 50(21), 8827–8844.
  • Daoulas, K. C.; Harmandaris, V. A.; Mavrantzas, V. G. Detailed Atomistic Simulation of a Polymer Melt/solid Interface: Structure, Density, and Conformation of a Thin Film of Polyethylene Melt Adsorbed on Graphite. Macromolecules. 2005, 38(13), 5780–5795.
  • Pandey, Y. N.; Brayton, A.; Burkhart, C.; Papakonstantopoulos, G. J.; Doxastakis, M. Multiscale Modeling of Polyisoprene on Graphite. J. Chem. Phys. 2014, 140(5), 054908.
  • Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Gromacs:, L. E. High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015, 1–2, 19–25.
  • Van Gunsteren, W. F.; Berendsen, H. J. C. A Leap-Frog Algorithm for Stochastic Dynamics. Mol. Simul. 1988, 1(3), 173–185.
  • Evans, D. J.; Holian, B. L. The Nose-Hoover Thermostat. J. Chem. Phys. 1985, 83(8), 4069–4074.
  • Sharma, P.; Roy, S.; Karimi-Varzaneh, H. A. Validation of Force Fields of Rubber through Glass-Transition Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation. J. Phys. Chem. B. 2016, 120(7), 1367–1379.
  • Doxastakis, M.; Mavrantzas, V. G.; Theodorou, D. N. Atomistic Monte Carlo Simulation of Cis-1,4 Polyisoprene Melts. I. Single Temperature End-Bridging Monte Carlo Simulations. J. Chem. Phys. 2001, 115(24), 11339–11351.
  • Theodorou, D. N.;. Variable-Density Model of Polymer Melt Surfaces: Structure and Surface Tension. Macromolecules. 1989, 22(12), 4578–4589.
  • Wu, D. T.; Fredrickson, G. H.; Carton, J. ‐. P.; Ajdari, A.; Leibler, L. Distribution of Chain Ends at the Surface of a Polymer Melt: Compensation Effects and Surface Tension. J. Polym. Sci. Part B Polym. Phys. 1995, 33(17), 2373–2389.
  • Fetters, L. J.; Lohse, D. J.; Graessley, W. W. Chain Dimensions and Entanglement Spacings in Dense Macromolecular Systems. J. Polym. Sci. Part B Polym. Phys. 1999, 37(10), 1023–1033.
  • Harmandaris, V. A.; Doxastakis, M.; Mavrantzas, V. G.; Theodorou, D. N. Detailed Molecular Dynamics Simulation of the Self-Diffusion of N-Alkane and Cis-1,4 Polyisoprene Oligomer Melts. J. Chem. Phys. 2002, 116(1), 436–446.
  • Turnbull, D.; Cohen, M. H. Free-Volume Model of the Amorphous Phase: Glass Transition. J. Chem. Phys. 1961, 34(1), 120–125.
  • Nemoto, N.; Moriwaki, M.; Odani, H.; Kurata, M. Shear Creep Studies of Narrow-Distribution Poly (As-isoprene). Macromolecules. 1971, 4(2), 215–219.
  • Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Computing the Local Stress Tensor in MD Simulations. 2015. http://mdstress.org/files/5914/4657/7530/Local_stress.pdf.
  • Torres-Sánchez, A.; Vanegas, J. M.; Arroyo, M. Geometric Derivation of the Microscopic Stress: A Covariant Central Force Decomposition. J. Mech. Phys. Solids. 2016, 93, 224–239.
  • Torres-Sánchez, A.; Vanegas, J. M.; Arroyo, M. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. Phys. Rev. Lett. 2015, 114(25), 1–5.
  • Ollila, O. H. S.; Risselada, H. J.; Louhivuori, M.; Lindahl, E.; Vattulainen, I.; Marrink, S. J. 3D Pressure Field in Lipid Membranes and Membrane-Protein Complexes. Phys. Rev. Lett. 2009, 102(7), 078101.
  • Vanegas, J. M.; Longo, M. L.; Faller, R. Crystalline, Ordered and Disordered Lipid Membranes: Convergence of Stress Profiles Due to Ergosterol. J. Am. Chem. Soc. 2011, 133(11), 3720–3723.
  • Xing, C.; Ollila, O. H. S.; Vattulainen, I.; Faller, R. Asymmetric Nature of Lateral Pressure Profiles in Supported Lipid Membranes and Its Implications for Membrane Protein Functions. Soft Matter. 2009, 5(17), 3258–3261.
  • Giunta, G.; Svaneborg, C.; Karimi-varzaneh, H. A.; Carbone, P. Effects of Graphite and Plasticizers on the Structure of Highly Entangled Polyisoprene Melts. (Under Review). ACS Applied Polymer Materials; 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.