221
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Determination of relevant mechanical properties for the production process of polyethylene by using mesoscale molecular simulation techniques

&
Pages 242-261 | Received 31 Oct 2019, Accepted 23 Jan 2020, Published online: 10 Feb 2020

References

  • Grommes, D.; Bruch, O.; Geilen, J. Investigation of the Influencing Factors on the Process-dependent Elasticity Modulus in Extrusion Blow Molded Plastic Containers for Material Modelling in the Finite Element Simulation. In Regional Conference of the Polymer Processing Society, AIP Conference Proceedings (1779), Graz, Austria, Sept 21-25, 2015; Holzer, C.H., Payer, M., Eds.; AIP Publishing: Melville, 2016.
  • Leopold, T. Rechnergestützte Auslegung streckblasgeformter Kunststoffhohlkörper. PhD thesis, RWTH Aachen, Germany, 2011.
  • Hopmann, C.; Michaeli, W.; Rasche, S. FE-Analysis of Stretch-blow Moulded Bottles Using an Integrative Process Simulation. In The 14th International ESAFORM Conference on Material Forming, AIP Conference Proceedings (1353), Belfast, United Kingdom, April 27-29, 2011; Menary, G., Ed.; AIP Publishing: Melville, 2011.
  • Park, H.-J.; Kim, J. R.; Yoon, I. S. Stretch Blow Molding of Pet Bottle: Simulation of Blowing Process and Prediction of Bottle Properties. In: ANTEC 2003 Plastics, Conference Proceedings (Volume 1: Processing), Nashville, USA, May 4-8; Society of Plastics Engineers: Greenwich, Brookfield, 2003.
  • Michels, P.; Grommes, D.; Oeckerath, A.; Reith, D.; Bruch, O. An Integrative Simulation Concept for Extrusion Blow Molded Plastic Bottles. Finite Ele. Anal. Des. 2019, 164, 69–78. DOI: 10.1016/j.finel.2019.06.008.
  • Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, United Kingdom, 2017.
  • Kremer, K. Computer Simulations for Macromolecular Science. Macromol. Chem. Phys. 2003, 2(204), 257–264. DOI: 10.1002/macp.200290079.
  • Hossain, D.; Tschopp, M. A.; Ward, D. K.; Bouvard, J. L.; Wang, P. Molecular Dynamics Simulations of Deformation Mechanisms of Amorphous Polyethylene. Polymer. 2010, 51(25), 6071–6083. DOI: 10.1016/j.polymer.2010.10.009.
  • Kuang, S.; Gezelter, J. A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity. J. Chem. Phys. 2010, 133(16), 164101. DOI: 10.1063/1.3499947.
  • Steinhauser, M. O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications; Springer: Berlin, Heidelberg, Germany, 2017.
  • Tschopp, M. A.; Bouvard, J. L.; Ward, D. K.; Bammann, D. J.; Horstemeyer, M. F. Influence of Ensemble Boundary Conditions (Thermostat and Barostat) on the Deformation of Amorphous Polyethylene by Molecular Dynamics. arXiv 1310.0728:28. 2013.
  • Field, J. E.; Walley, S. M.; Proud, W. G.; Goldrein, H. T.; Siviour, C. R. Review of Experimental Techniques for High Rate Deformation and Shock Studies. Int. J. Impact Eng. 2004, 30(7), 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
  • Sahputra, H.; Echtermeyer, A. T. Effects of Temperature and Strain Rate on the Deformation of Amorphous Polyethylene: A Comparison between Molecular Dynamics Simulations and Experimental Results. Model. Simul. Mat. Sci. Eng. 2013, 21, 065016. DOI: 10.1088/0965-0393/21/6/065016.
  • Vu-Bac, N.; Areias, P. M.; Rabczuk, T. A Multiscale Multisurface Constitutive Model for the Thermo-plastic Behavior of Polyethylene. Polymer. 2016, 105, 327–338. DOI: 10.1016/j.polymer.2016.10.039.
  • Yashiro, K.; Ito, T.; Tomita, Y. Molecular Dynamics Simulation of Deformation Behavior in Amorphous Polymer: Nucleation of Chain Entanglements and Network Structure under Uniaxial Tension. Int. J. Mech. Sci. 2003, 45(11), 1863–1876. DOI: 10.1016/j.ijmecsci.2003.11.001.
  • Zhao, J.; Nagao, S.; Zhang, Z. Thermomechanical Properties Dependence on Chain Length in Bulk Polyethylene: Coarse-grained Molecular Dynamics Simulations. J. Mater. Res. 2010, 25(3), 537–544. DOI: 10.1557/JMR.2010.0061.
  • Lavine, M. S.; Waheed, N.; Rutledge, G. C. Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene during Uniaxial Extension. Polymer. 2003, 44(5), 1771–1779. DOI: 10.1016/S0032-3861(03)00017-X.
  • Kim, J. M.; Locker, R.; Rutledge, G. C. Plastic Deformation of Semicrystalline Polyethylene under Extension, Compression, and Shear Using Molecular Dynamics Simulation. Macromolecules. 2014, 47(7), 2515–2528. DOI: 10.1021/ma402297a.
  • Yeh, I.-C.; Andzelm, J. W.; Rutledge, G. C. Mechanical and Structural Characterization of Semicrystalline Polyethylene under Tensile Deformation by Molecular Dynamics Simulations. Macromolecules. 2015, 48(12), 4228–4239. DOI: 10.1021/acs.macromol.5b00697.
  • Olsson, P. A. T.; ’t Veld, P.; Adreasson, E.; Bergvall, E.; Jutemar, E. P.; Petersson, V.; Rutledge, G. C.; Kroon, M. All-atomic and Coarse-grained Molecular Dynamics Investigation of Deformation in Semi-crystalline Lamellar Polyethylene. Polymer. 2018, 153, 305–316. DOI: 10.1016/j.polymer.2018.07.075.
  • Yeh, I.-C.; Lenhart, J. L.; Rutledge, G. C.; Andzelm, J. W. Molecular Dynamics Simulation of the Effects of Layer Thickness and Chain Tilt on Tensile Deformation Mechanisms of Semicrystalline Polyethylene. Macromolecules. 2017, 50(4), 1700–1712. DOI: 10.1021/acs.macromol.6b01748.
  • Moyassari, A.; Gkourmpis, T.; Hedenqvist, M. S.; Gedde, U. W. Molecular Dynamics Simulation of Linear Polyethylene Blends: Effect of Molar Mass Bimodality on Topological Characteristics and Mechanical Behavior. Polymer. 2019, 161, 139–150. DOI: 10.1016/j.polymer.2018.12.012.
  • Halverson, J. D.; Brandes, T.; Lenz, O.; Arnold, A.; Bevc, S.; Starchenko, V.; Kremer, K.; Stuehn, T.; Reith, D. ESPResSo++: A Modern Multiscale Simulation Package for Soft Matter Systems. Comput. Phys. Commun. 2013, 184(4), 1129–1149. DOI: 10.1016/j.cpc.2012.12.004.
  • Kremer, K.; Müller-Plathe, F. Multiscale Simulation in Polymer Science. Mol. Simul. 2002, 28(8–9), 729–750. DOI: 10.1080/0892702021000002458.
  • Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving Effective Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24(13), 1624–1636. DOI: 10.1002/jcc.10307.
  • Peter, C.; Kremer, K. Multiscale Simulation of Soft Matter Systems from the Atomistic to the Coarse-grained Level and Back. Soft Matter. 2009, 22(5), 4357–4366. DOI: 10.1039/b912027k.
  • Moreira, L.; Zhang, G.; Müller, F.; Stuehn, T.; Kremer, K. Direct Equilibration and Characterization of Polymer Melts for Computer Simulations. Macromol. Theory Simul. 2015, 24(5), 419–431. DOI: 10.1002/mats.v24.5.
  • Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. Equilibration of Long Chain Polymer Melts in Computer Simulations. J. Chem. Phys. 2003, 119(24), 12718–12728. DOI: 10.1063/1.1628670.
  • Eichenberger, A. P. Molecular Dynamics Simulation of Alkanes and Proteins: Methodology, Prediction of Properties and Comparison to Experimental Data. PhD thesis, ETH Zürich, Switzerland, 2012.
  • Titomanlio, G.; Speranza, V.; Brucato, V. On the Simulation of Thermoplastic Injection Moulding Process. Int. Polym. Process. 1995, 10(1), 55–61. DOI: 10.3139/217.950055.
  • Fitzharris, E. R.; Rosen, D. W.; Shofner, M. L. Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling. Polymer. 2019, 166, 196–205. DOI: 10.1016/j.polymer.2019.01.083.
  • Boyer, R. F.; Snyder, R. G. The Glass Temperature of Amorphous Polyethylene. J. Polymer Sci. Polym. Lett. Ed. 1977, 15(5), 315–320. DOI: 10.1002/pol.1977.130150511.
  • Capaldi, M. F.; Boyce, M. C.; Rutledge, G. C. Molecular Response of a Glassy Polymer to Active Deformation. Polymer. 2004, 45(4), 1391–1399. DOI: 10.1016/j.polymer.2003.07.011.
  • Yang, Q.; Chen, X.; He, Z.; Lan, F.; Liu, H. The Glass Transition Temperature Measurements of Polyethylene: Determined by Using Molecular Dynamic Method. RSC Adv. 2016, 6(15), 12053–12060. DOI: 10.1039/C5RA21115H.
  • Chen, F. C.; Choy, C. L.; Wong, S. P.; Young, K. Negative Thermal Expansivity of Polymer Crystals: Planar Zig‐zag Chain Model. J. Polym. Sci. Polym. Phys. Ed. 1981, 19(6), 971–981.
  • White, G. K.; Choy, C. L. Thermal Expansion and Grüneisen Parameters of Isotropic and Oriented Polyethylene. J. Polym. Sci. Polym. Phys. Ed. 1981, 22(5), 835–846.
  • Zehtabeyazdi, A.; Zebarjad, S. M.; Sajjadi, S. A.; Abolfazli Esfahani, J. On the Sensitivity of Dimensional Stability of High Density Polyethylene on Heating Rate. Express Polym. Lett. 2007, 1(2), 92–97. DOI: 10.3144/expresspolymlett.2007.16.
  • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least-squares Procedures. Anal. Chem. 1964, 36(8), 1627–1639. DOI: 10.1021/ac60214a047.
  • Zhang, G.; Moreira, L. A.; Stuehn, T.; Daoulas, C. D.; Kremer, K. Equilibration of High Molecular Weight Polymer Melts: A Hierarchical Strategy. ACS Macro Lett. 2014, 3(2), 198–203. DOI: 10.1021/mz5000015.
  • Zhang, G.; Stuehn, T.; Daoulas, C. D.; Kremer, K. One Size Fits All: Equilibrating Chemically Different Polymer Liquids through Universal Long-wavelength Description. J. Chem. Phys. 2015, 142(22), 221102. DOI: 10.1063/1.4922538.
  • Pfaller, S.; Rahimi, M.; Possart, G.; Steinmann, P.; Müller-Plathe, F.; Böhm, M. C. An Arlequin-based Method to Couple Molecular Dynamics and Finite Element Simulations of Amorphous Polymers and Nanocomposites. Comput. Methods Appl. Mech. Eng. 2013, 260, 109–129. DOI: 10.1016/j.cma.2013.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.