870
Views
16
CrossRef citations to date
0
Altmetric
Review Article

A review on graphene-based materials for removal of toxic pollutants from wastewater

&
Pages 297-322 | Received 01 Jan 2020, Accepted 02 Mar 2020, Published online: 31 Mar 2020

References

  • Lubchenco, J. Entering the Century of the Environment: A New Social Contract for Science. Science. 1998, 279(5350), 491–497. DOI: 10.1126/science.279.5350.491.
  • Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. New Biotechnol. 2015, 32(1), 147–156.
  • Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K. Y.-H. Emerging Contaminants of Public Health Significance as Water Quality Indicator Compounds in the Urban Water Cycle. Environ. Int. 2014, 71, 46–62. DOI: 10.1016/j.envint.2014.05.025.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92(3), 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Yilmaz, M.; Tay, T.; Kivanc, M.;Turk, H. Removal of copper(II) Ions from Aqueous Solution by a Lactic Acid Bacterium. Braz. J. Chem. Eng. 2010, 27(2), 309–314.
  • Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L. Special Wettable Materials for Oil/water Separation. J. Mater. Chem. A. 2014, 2(8), 2445–2460.
  • Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano. 2010, 4(7), 3979–3986.
  • Tan, I. A. W.; Ahmad, A. L.; Hameed, B. H. Adsorption of Basic Dye on High-surface-area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 2008, 154(1–3), 337–346. DOI: 10.1016/j.jhazmat.2007.10.031.
  • Jacobson, M. Z. Review of Solutions to Global Warming, Air Pollution, and Energy Security. Energy Environ. Sci. 2009, 2(2), 148–173. DOI: 10.1039/B809990C.
  • Zhang, L.; Fang, M. Nanomaterials in Pollution Trace Detection and Environmental Improvement. Nano Today. 2010, 5(2), 128–142. DOI: 10.1016/j.nantod.2010.03.002.
  • El Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of Basic Dyes from Aqueous Solution onto Activated Carbons. Chem. Eng. J. 2008, 135(3), 174–184. DOI: 10.1016/j.cej.2007.02.023.
  • Sulak, M. T.; Yatmaz, H. C. Removal of Textile Dyes from Aqueous Solutions with Eco-friendly Biosorbent. Desalin. Water Treat. 2012, 37(1–3), 169–177. DOI: 10.1080/19443994.2012.661269.
  • Zhang, H.; Feng, J.; Zhu, W.; Liu, C.; Xu, S.; Shao, P.; Wu, D.; Yang, W.; Gu, J. Chronic Toxicity of Rare-earth Elements on Human Beings. Biol. Trace Elem. Res. 2000, 73(1), 1–17.
  • Porru, S.; Placidi, D.; Quarta, C.; Sabbioni, E.; Pietra, R.; Fortaner, S. The Potential Role of Rare Earths in the Pathogenesis of Interstitial Lung Disease: A Case Report of Movie Projectionist as Investigated by Neutron Activation Analysis. J. Trace Elem. Med. Biol. 2001, 14(4), 232–236.
  • Zaichick, S.; Zaichick, V.; Karandashev, V.; Nosenko, S. Accumulation of Rare Earth Elements in Human Bone within the Lifespan. Metallomics. 2011, 3(2), 186–194.
  • Yoon, H. W.; Cho, Y. H.; Park, H. B. Graphene-based Membranes: Status and Prospects. Phil. Trans. R. Soc. A. 2016, 374(2060), 20150024. DOI: 10.1098/rsta.2015.0024.
  • Spiegler, K. S.; El-Sayed, Y. M. The Energetics of Desalination Processes. Desalination. 2001, 134(1–3), 109–128. DOI: 10.1016/S0011-9164(01)00121-7.
  • Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B; Moulin, P. Reverse Osmosis Desalination: Water Sources, Technology, and Today’s Challenges. Water Res. 2009, 43(9), 2317–2348.
  • Zhu, A.; Rahardianto, A.; Christofides, P. D.; Cohen, Y. Reverse Osmosis Desalination with High Permeability Membranes — Cost Optimization and Research Needs. Desalin. Water Treat. 2010, 15(1–3), 256–266.
  • Elimelech, M.; Phillip, W. A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science. 2011, 333(6043), 712–717. DOI: 10.1126/science.1200488.
  • Huang, L.; Zhang, M.; Li, C.; Shi, G. Graphene-Based Membranes for Molecular Separation. J. Phys. Chem. Lett. 2015, 6(14), 2806–2815.
  • Lee, K. P.; Arnot, T. C.; Mattia, D. A Review of Reverse Osmosis Membrane Materials for desalination—Development to Date and Future Potential. J. Membr. Sci. 2011, 370(1–2), 1–22. DOI: 10.1016/j.memsci.2010.12.036.
  • Humplik, T.; Lee, J.; O’Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; et al. Nanostructured Materials for Water Desalination. Nanotechnology. 2011, 22(29), 292001.
  • Pendergast, M. M.; Hoek, E. M. V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4(6), 1946–1971. DOI: 10.1039/c0ee00541j.
  • Mahmoud, K. A.; Mansoor, B.; Mansour, A.; Khraisheh, M. Functional Graphene Nanosheets: The Next Generation Membranes for Water Desalination. Desalination. 2015, 356, 208–225. DOI: 10.1016/j.desal.2014.10.022.
  • Hu, M.; Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47(8), 3715–3723. DOI: 10.1021/es400571g.
  • Misdan, N.; Lau, W. J.; Ismail, A. F. Seawater Reverse Osmosis (SWRO) Desalination by Thin-film Composite membrane—Current Development, Challenges and Future Prospects. Desalination. 2012, 287, 228–237. DOI: 10.1016/j.desal.2011.11.001.
  • Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48(10), 4638–4663. DOI: 10.1021/ie8019032.
  • Gascon, J.; Kapteijn, F.; Zornoza, B.; Sebastián, V.; Casado, C.; Coronas, J. Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chem. Mater. 2012, 24(15), 2829–2844.
  • Dong, C.; Campell, A. S.; Eldawud, R.; Perhinschi, G.; Rojanasakul, Y.; Dinu, C. Z. Effects of Acid Treatment on Structure, Properties and Biocompatibility of Carbon Nanotubes. Appl. Surf. Sci. 2013, 264, 261–268. DOI: 10.1016/j.apsusc.2012.09.180.
  • Campbell, A. S.; Dong, C.; Dordick, J. S.; Dinu, C. Z. BioNano Engineered Hybrids for Hypochlorous Acid Generation. Process Biochem. 2013, 48(9), 1355–1360.
  • Kemnade, N.; Shearer, C. J.; Dieterle, D. J.; Cherevan, A. S.; Gebhardt, P.; Wilde, G.; Eder, D. Non-destructive Functionalisation for Atomic Layer Deposition of Metal Oxides on Carbon Nanotubes: Effect of Linking Agents and Defects. Nanoscale. 2015, 7(7), 3028–3034.
  • Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon Nanotubes – The Route toward Applications. Science. 2002, 297(5582), 787–792. DOI: 10.1126/science.1060928.
  • Yu, M.; Funke, H. H.; Falconer, J. L.; Noble, R. D. High Density, Vertically-Aligned Carbon Nanotube Membranes. Nano Lett. 2009, 9(1), 225–229.
  • Goh, P. S.; Ismail, A. F.; Ng, B. C. Carbon Nanotubes for Desalination: Performance Evaluation and Current Hurdles. Desalination. 2013, 308, 2–14. DOI: 10.1016/j.desal.2012.07.040.
  • Huang, H.; Ying, Y.; Peng, X. Graphene Oxide Nanosheet: An Emerging Star Material for Novel Separation Membranes. J. Mater. Chem. A. 2014, 2(34), 13772–13782. DOI: 10.1039/C4TA02359E.
  • Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; et al. Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications. Nano Today. 2010, 5(4), 351–372.
  • Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X.; Kang, E.-T. Graphene and Its Derivatives: Switching ON and OFF. Chem. Soc. Rev. 2012, 41(13), 4688–4707.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature. 2007, 448(7152), 457–460.
  • Paek, S.-M.; Yoo, E.; Honma, I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett. 2009, 9(1), 72–75. DOI: 10.1021/nl802484w.
  • Su, F.-Y.; You, C.; He, Y.-B.; Lv, W.; Cui, W.; Jin, F.; Li, B.; Yang, Q.-H.; Kang, F. Flexible and Planar Graphene Conductive Additives for Lithium-ion Batteries. J. Mater. Chem. 2010, 20(43), 9644–9650.
  • Yin, Z; Zhu, J; He, Q; Cao, X; Tan, C; Chen, H; Yan, Q; Zhang, H. Graphene‐Based Materials for Solar Cell Applications. Adv. Energy Mater. 2013, 4, 1300574.
  • Tsetseris, L.; Pantelides, S. T. Graphene: An Impermeable or Selectively Permeable Membrane for Atomic Species? Carbon. 2014, 67, 58–63. DOI: 10.1016/j.carbon.2013.09.055.
  • Gai, J.-G.; Gong, X.-L.; Wang, -W.-W.; Zhang, X.; Kang, W.-L. An Ultrafast Water Transport Forward Osmosis Membrane: Porous Graphene. J. Mater. Chem. A. 2014, 2(11), 4023–4028.
  • Liu, H.; Dai, S.; Jiang, D. Permeance of H2 through Porous Graphene from Molecular Dynamics. Solid State Commun. 2013, 175–176, 101–105. DOI: 10.1016/j.ssc.2013.07.004.
  • You, Y.; Sahajwalla, V.; Yoshimura, M.; Joshi, R. K. Graphene and Graphene Oxide for Desalination. Nanoscale. 2015, 8(1), 117–119.
  • Jiang, D.; Cooper, V. R.; Dai, S. Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Lett. 2009, 9(12), 4019–4024. DOI: 10.1021/nl9021946.
  • Cohen-Tanugi, D.; Grossman, J. C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012, 12(7), 3602–3608. DOI: 10.1021/nl3012853.
  • Sint, K.; Wang, B.; Král, P. Selective Ion Passage through Functionalized Graphene Nanopores. J. Am. Chem. Soc. 2009, 131(27), 9600. DOI: 10.1021/ja903655u.
  • Konatham, D.; Yu, J.; Ho, T. A.; Striolo, A. Simulation Insights for Graphene-Based Water Desalination Membranes. Langmuir. 2013, 29(38), 11884–11897.
  • He, Z.; Zhou, J.; Lu, X.; Corry, B. Bioinspired Graphene Nanopores with Voltage-Tunable Ion Selectivity for Na+ and K+. ACS Nano. 2013, 7(11), 10148–10157.
  • Owais, C.; James, A.; John, C.; Dhali, R.; Swathi, R. S. Selective Permeation through One-Atom-Thick Nanoporous Carbon Membranes: Theory Reveals Excellent Design Strategies! J. Phys. Chem. B. 2018, 122(20), 5127–5146.
  • Riyaz, M.; Goel, N. A QM/MM Study to Investigate Selectivity of Nanoporous Graphene Membrane for Arsenate and Chromate Removal from Water. Chem. Phys. Lett. 2017, 685, 371–376. DOI: 10.1016/j.cplett.2017.08.005.
  • Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y.-W. Origin of Anomalous Water Permeation through Graphene Oxide Membrane. Nano Lett. 2013, 13(8), 3930–3935. DOI: 10.1021/nl4020292.
  • Boukhvalov, D. W.; Katsnelson, M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130(32), 10697–10701. DOI: 10.1021/ja8021686.
  • Wang, L.; Sun, Y. Y.; Lee, K.; West, D.; Chen, Z. F.; Zhao, J. J.; Zhang, S. B. Stability of Graphene Oxide Phases from First-principles Calculations. Phys. Rev. B. 2010, 82(16), 161406.
  • Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes. Science. 2014, 343(6172), 752–754.
  • Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V.; et al. Tunable Sieving of Ions Using Graphene Oxide Membranes. Nat. Nanotechnol. 2017, 12(6), 546–550.
  • Wei, N.; Peng, X.; Xu, Z. Understanding Water Permeation in Graphene Oxide Membranes. ACS Appl. Mater. Interfaces. 2014, 6(8), 5877–5883. DOI: 10.1021/am500777b.
  • Guerrero-Avilés, R.; Orellana, W. Energetics and Diffusion of Liquid Water and Hydrated Ions through Nanopores in Graphene: Ab Initio Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2017, 19(31), 20551–20558. DOI: 10.1039/C7CP03449K.
  • Heath, J. J.; Kuroda, M. A. First Principles Studies of the Interactions between Alkali Metal Elements and Oxygen-passivated Nanopores in Graphene. Phys. Chem. Chem. Phys. 2018, 20(40), 25822–25828. DOI: 10.1039/C8CP04958K.
  • Wang, Y.; He, Z.; Gupta, K. M.; Shi, Q.; Lu, R. Molecular Dynamics Study on Water Desalination through Functionalized Nanoporous Graphene. Carbon. 2017, 116, 120–127. DOI: 10.1016/j.carbon.2017.01.099.
  • Gai, J.-G.; Gong, X.-L. Zero Internal Concentration Polarization FO Membrane: Functionalized Graphene. J. Mater. Chem. A. 2013, 2(2), 425–429. DOI: 10.1039/C3TA13562D.
  • Ang, E. Y. M.; Ng, T. Y.; Yeo, J.; Liu, Z.; Geethalakshmi, K. R. Free-standing Graphene Slit Membrane for Enhanced Desalination. Carbon. 2016, 110, 350–355. DOI: 10.1016/j.carbon.2016.09.043.
  • Muscatello, J.; Jaeger, F.; Matar, O. K.; Müller, E. A. Optimizing Water Transport through Graphene-Based Membranes: Insights from Nonequilibrium Molecular Dynamics. ACS Appl. Mater. Interfaces. 2016, 8(19), 12330–12336.
  • Kommu, A.; Namsani, S.; Singh, J. K. Removal of Heavy Metal Ions Using Functionalized Graphene Membranes: A Molecular Dynamics Study. RSC Adv. 2016, 6(68), 63190–63199. DOI: 10.1039/C6RA06817K.
  • Barakat, M. A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian J. Chem. 2011, 4(4), 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
  • Li, Y.; Xu, Z.; Liu, S.; Zhang, J.; Yang, X. Molecular Simulation of Reverse Osmosis for Heavy Metal Ions Using Functionalized Nanoporous Graphenes. Comput. Mater. Sci. 2017, 139, 65–74. DOI: 10.1016/j.commatsci.2017.07.032.
  • Chen, Q.; Yang, X. Pyridinic Nitrogen Doped Nanoporous Graphene as Desalination Membrane: Molecular Simulation Study. J. Membr. Sci. 2015, 496, 108–117. DOI: 10.1016/j.memsci.2015.08.052.
  • Qiu, Y.; Schwegler, B. R.; Wang, L.-P. Polarizable Molecular Simulations Reveal How Silicon-Containing Functional Groups Govern the Desalination Mechanism in Nanoporous Graphene. J. Chem. Theory Comput. 2018, 14(8), 4279–4290. DOI: 10.1021/acs.jctc.8b00226.
  • Köhler, M. H.; Bordin, J. R.; Barbosa, M. C. Ion Flocculation in Water: From Bulk to Nanoporous Membrane Desalination. J. Mol. Liq. 2019, 277, 516–521. DOI: 10.1016/j.molliq.2018.12.077.
  • Chogani, A.; Moosavi, A.; Bagheri Sarvestani, A.; Shariat, M. The Effect of Chemical Functional Groups and Salt Concentration on Performance of Single-layer Graphene Membrane in Water Desalination Process: A Molecular Dynamics Simulation Study. J. Mol. Liq. 2020, 301, 112478. DOI: 10.1016/j.molliq.2020.112478.
  • Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water Desalination Using Nanoporous Single-layer Graphene. Nat. Nanotechnol. 2015, 10(5), 459–464.
  • Kazemi, A. S.; Hosseini, S. M.; Abdi, Y. Large Total Area Membrane of Suspended Single Layer Graphene for Water Desalination. Desalination. 2019, 451, 160–171. DOI: 10.1016/j.desal.2017.12.050.
  • Qin, Y.; Hu, Y.; Koehler, S.; Cai, L.; Wen, J.; Tan, X.; Xu, W. L.; Sheng, Q.; Hou, X.; Xue, J.; et al. Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes. ACS Appl. Mater. Interfaces. 2017, 9(11), 9239–9244.
  • Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes. Nat. Nanotechnol. 2017, 12(6), 509–522.
  • Cohen-Tanugi, D.; Lin, L.-C.; Grossman, J. C. Multilayer Nanoporous Graphene Membranes for Water Desalination. Nano Lett. 2016, 16(2), 1027–1033. DOI: 10.1021/acs.nanolett.5b04089.
  • Yoshida, H.; Bocquet, L. Labyrinthine Water Flow across Multilayer Graphene-based Membranes: Molecular Dynamics versus Continuum Predictions. J. Chem. Phys. 2016, 144(23), 234701. DOI: 10.1063/1.4953685.
  • Dahanayaka, M.; Liu, B.; Hu, Z.; Pei, Q.-X.; Chen, Z.; Law, A. W.-K.; Zhou, K. Graphene Membranes with Nanoslits for Seawater Desalination via Forward Osmosis. Phys. Chem. Chem. Phys. 2017, 19(45), 30551–30561.
  • Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.; Shorubalko, I.; Kye, J.-I.; Lee, C.; Park, H. G. Ultimate Permeation Across Atomically Thin Porous Graphene. Science. 2014, 344(6181), 289.
  • Kargar, M.; Lohrasebi, A. Water Flow Modeling through a Graphene-based Nanochannel: Theory and Simulation. Phys. Chem. Chem. Phys. 2019, 21(6), 3304–3309. DOI: 10.1039/C8CP06839A.
  • Sahu, P.; Ali, S. Breakdown of Continuum Model for Water Transport and Desalination through Ultrathin Graphene Nanopores: Insights from Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2019, 21(38), 21389–21406. DOI: 10.1039/C9CP04364K.
  • Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E. Y. M.; Jiao, Y.; Park, M. J.; Lim, S. I.; Lawn, M.; et al. Anti-fouling Graphene-based Membranes for Effective Water Desalination. Nat. Commun. 2018, 9(1), 683.
  • Nicolaï, A.; Sumpter, B. G.; Meunier, V. Tunable Water Desalination across Graphene Oxide Framework Membranes. Phys. Chem. Chem. Phys. 2014, 16(18), 8646–8654. DOI: 10.1039/c4cp01051e.
  • Chen, B.; Jiang, H.; Liu, X.; Hu, X. Molecular Insight into Water Desalination across Multilayer Graphene Oxide Membranes. ACS Appl. Mater. Interfaces. 2017, 9(27), 22826–22836.
  • Dai, H.; Xu, Z.; Yang, X. Water Permeation and Ion Rejection in Layer-by-Layer Stacked Graphene Oxide Nanochannels: A Molecular Dynamics Simulation. J. Phys. Chem. C. 2016, 120(39), 22585–22596. DOI: 10.1021/acs.jpcc.6b05337.
  • Devanathan, R.; Chase-Woods, D.; Shin, Y.; Gotthold, D. W. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers Is Slow. Sci. Rep. 2016, 6(1), 29484.
  • Willcox, J. A. L.; Kim, H. J. Molecular Dynamics Study of Water Flow across Multiple Layers of Pristine, Oxidized, and Mixed Regions of Graphene Oxide. ACS Nano. 2017, 11(2), 2187–2193. DOI: 10.1021/acsnano.6b08538.
  • Cohen-Tanugi, D.; Grossman, J. C. Water Permeability of Nanoporous Graphene at Realistic Pressures for Reverse Osmosis Desalination. J. Chem. Phys. 2014, 141(7), 074704. DOI: 10.1063/1.4892638.
  • Fang, C.; Yu, Z.; Qiao, R. Impact of Surface Ionization on Water Transport and Salt Leakage through Graphene Oxide Membranes. J. Phys. Chem. C. 2017, 121(24), 13412–13420. DOI: 10.1021/acs.jpcc.7b04283.
  • Hosseini, M.; Azamat, J.; Erfan-Niya, H. Improving the Performance of Water Desalination through Ultra-permeable Functionalized Nanoporous Graphene Oxide Membrane. Appl. Surf. Sci. 2018, 427, 1000–1008. DOI: 10.1016/j.apsusc.2017.09.071.
  • Gogoi, A.; Konch, T. J.; Raidongia, K.; Anki Reddy, K. Water and Salt Dynamics in Multilayer Graphene Oxide (GO) Membrane: Role of Lateral Sheet Dimensions. J. Membr. Sci. 2018, 563, 785–793. DOI: 10.1016/j.memsci.2018.06.031.
  • Giri, A. K.; Teixeira, F.; Cordeiro, M. N. D. S. Salt Separation from Water Using Graphene Oxide Nanochannels: A Molecular Dynamics Simulation Study. Desalination. 2019, 460, 1–14. DOI: 10.1016/j.desal.2019.02.014.
  • Lohrasebi, A.; Koslowski, T. Modeling Water Purification by an Aquaporin-inspired Graphene-based Nano-channel. J. Mol. Model. 2019, 25(9), 280. DOI: 10.1007/s00894-019-4160-y.
  • Qiu, R.; Xiao, J.; Chen, X. D.; Selomulya, C.; Zhang, X.; Woo, M. W. Relationship between Desalination Performance of Graphene Oxide Membranes and Edge Functional Groups. ACS Appl. Mater. Interfaces. 2020, 12(4), 4769–4776.
  • Li, W.; Zhang, L.; Zhang, X.; Zhang, M.; Liu, T.; Chen, S. Atomic Insight into Water and Ion Transport in 2D Interlayer Nanochannels of Graphene Oxide Membranes: Implication for Desalination. J. Membr. Sci. 2020, 596, 117744. DOI: 10.1016/j.memsci.2019.117744.
  • Azamat, J. Functionalized Graphene Nanosheet as a Membrane for Water Desalination Using Applied Electric Fields: Insights from Molecular Dynamics Simulations. J. Phys. Chem. C. 2016, 120(41), 23883–23891. DOI: 10.1021/acs.jpcc.6b08481.
  • Rollings, R. C.; Kuan, A. T.; Golovchenko, J. A. Ion Selectivity of Graphene Nanopores. Nat. Commun. 2016, 7(1), 11408. DOI: 10.1038/ncomms11408.
  • Ruan, Y.; Zhu, Y.; Zhang, Y.; Gao, Q.; Lu, X.; Lu, L. Molecular Dynamics Study of Mg2+/Li+ Separation via Biomimetic Graphene-Based Nanopores: The Role of Dehydration in Second Shell. Langmuir. 2016, 32(51), 13778–13786.
  • Zhu, Y.; Ruan, Y.; Zhang, Y.; Chen, Y.; Lu, X.; Lu, L. Mg2+-Channel-Inspired Nanopores for Mg2+/Li+ Separation: The Effect of Coordination on the Ionic Hydration Microstructures. Langmuir. 2017, 33(36), 9201–9210.
  • Nguyen, C. T.; Beskok, A. Saltwater Transport through Pristine and Positively Charged Graphene Membranes. J. Chem. Phys. 2018, 149(2), 024704. DOI: 10.1063/1.5032207.
  • Nguyen, C. T.; Beskok, A. Charged Nanoporous Graphene Membranes for Water Desalination. Phys. Chem. Chem. Phys. 2019, 21(18), 9483–9494. DOI: 10.1039/C9CP01079C.
  • Zhang, H.; Liu, B.; Wu, M.-S.; Zhou, K.; Law, A. W.-K. Transport of Salty Water through Graphene Bilayer in an Electric Field: A Molecular Dynamics Study. Comput. Mater. Sci. 2017, 131, 100–107. DOI: 10.1016/j.commatsci.2017.01.039.
  • Lohrasebi, A.; Rikhtehgaran, S. Ion Separation and Water Purification by Applying External Electric Field on Porous Graphene Membrane. Nano Res. 2018, 11(4), 2229–2236. DOI: 10.1007/s12274-017-1842-6.
  • Anitha, K.; Namsani, S.; Singh, J. K. Removal of Heavy Metal Ions Using a Functionalized Single-walled Carbon Nanotube: A Molecular Dynamics Study. J. Phys. Chem. A. 2015, 119(30), 8349–8358. DOI: 10.1021/acs.jpca.5b03352.
  • Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17(1), 117.
  • Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic Macromolecules: Synthesis of Starburst Dendrimers. Macromolecules. 1986, 19(9), 2466–2468.
  • Yuan, Y.; Zhang, G.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Poly(amidoamine) Modified Graphene Oxide as an Efficient Adsorbent for Heavy Metal Ions. Polym. Chem. 2013, 4(6), 2164–2167.
  • Zhang, F.; Wang, B.; He, S.; Man, R. Preparation of Graphene-Oxide/Polyamidoamine Dendrimers and Their Adsorption Properties toward Some Heavy Metal Ions. J. Chem. Eng. Data. 2014, 59(5), 1719–1726.
  • Kommu, A.; Velachi, V.; Cordeiro, M. N. D.; Singh, J. K. Removal of Pb (II) Ion Using PAMAM Dendrimer Grafted Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Study. J. Phys. Chem. A. 2017, 121(48), 9320–9329.
  • Bayat, A.; Aghamiri, S. F.; Moheb, A.; Vakili-Nezhaad, G. R. Oil Spill Cleanup from Sea Water by Sorbent Materials. Chem. Eng. Technol. 2005, 28(12), 1525–1528.
  • Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 2003, 10(3), 159–170.
  • Deschamps, G.; Caruel, H.; Borredon, M.-E.; Bonnin, C.; Vignoles, C. Oil Removal from Water by Selective Sorption on Hydrophobic Cotton Fibers. 1. Study of Sorption Properties and Comparison with Other Cotton Fiber-Based Sorbents. Environ. Sci. Technol. 2003, 37(5), 1013–1015.
  • Sohn, K.; Na, Y. J.; Chang, H.; Roh, K.-M.; Dong Jang, H.; Huang, J. Oil Absorbing Graphene Capsules by Capillary Molding. Chem. Commun. 2012, 48(48), 5968–5970.
  • Thanikaivelan, P.; Narayanan, N. T.; Pradhan, B. K.; Ajayan, P. M. Collagen Based Magnetic Nanocomposites for Oil Removal Applications. Sci. Rep. [Internet]. 2012, 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262048/ (accessed Mar 31, 2018).
  • Zhu, Q.; Pan, Q.; Liu, F. Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. J. Phys. Chem. C. 2011, 115(35), 17464–17470. DOI: 10.1021/jp2043027.
  • Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A. Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano. 2012, 6(6), 5413–5419.
  • Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting Nanowire Membranes for Selective Absorption. Nat. Nanotechnol. 2008, 3(6), 332–336.
  • Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano. 2012, 6(3), 2693–2703.
  • Chen, S.-H.; Yu, K.-C.; Lin, -S.-S.; Chang, D.-J.; Liou, R. M. Pervaporation Separation of Water/ethanol Mixture by Sulfonated Polysulfone Membrane. J. Membr. Sci. 2001, 183(1), 29–36.
  • Azamat, J.; Khataee, A.; Joo, S. W. Molecular Dynamics Simulation of Trihalomethanes Separation from Water by Functionalized Nanoporous Graphene under Induced Pressure. Chem. Eng. Sci. 2015, 127, 285–292. DOI: 10.1016/j.ces.2015.01.048.
  • Zhao, M.; Yang, X. Segregation Structures and Miscellaneous Diffusions for Ethanol/Water Mixtures in Graphene-Based Nanoscale Pores. J. Phys. Chem. C. 2015, 119(37), 21664–21673. DOI: 10.1021/acs.jpcc.5b03307.
  • Kommu, A.; Singh, J. K. Separation of Ethanol and Water Using Graphene and Hexagonal Boron Nitride Slit Pores: A Molecular Dynamics Study. J. Phys. Chem. C. 2017, 121(14), 7867–7880. DOI: 10.1021/acs.jpcc.7b00172.
  • Gao, Q.; Zhu, Y.; Ruan, Y.; Zhang, Y.; Zhu, W.; Lu, X.; Lu, L. Effect of Adsorbed Alcohol Layers on the Behavior of Water Molecules Confined in A Graphene Nanoslit: A Molecular Dynamics Study. Langmuir. 2017, 33(42), 11467–11474.
  • Borthakur, P.; Boruah, P. K.; Hussain, N.; Sharma, B.; Das, M. R.; Matić, S.; Řeha, D.; Minofar, B. Experimental and Molecular Dynamics Simulation Study of Specific Ion Effect on the Graphene Oxide Surface and Investigation of the Influence on Reactive Extraction of Model Dye Molecule at Water–Organic Interface. J. Phys. Chem. C. 2016, 120(26), 14088–14100.
  • Hou, D.; Zhang, Q.; Wang, M.; Zhang, J.; Wang, P.; Ge, Y. Molecular Dynamics Study Onwater and Ions on the Surface of Graphene Oxide Sheet: Effects of Functional Groups. Comput. Mater. Sci. 2019, 167, 237–247. DOI: 10.1016/j.commatsci.2019.05.038.
  • Wang, X.; Liu, Y.; Xu, J.; Li, S.; Zhang, F.; Ye, Q.; Zhai, X.; Zhao, X. Molecular dynamics study of stability and diffusion of graphene-based drug delivery systems. J. Nanomater. 2015 doi:10.1155/2015/872079
  • Mahdavi, M.; Rahmani, F.; Nouranian, S. Molecular Simulation of pH-dependent Diffusion, Loading, and Release of Doxorubicin in Graphene and Graphene Oxide Drug Delivery Systems. J. Mater. Chem. B. 2016, 4(46), 7441–7451. DOI: 10.1039/C6TB00746E.
  • Safdari, F.; Raissi, H.; Shahabi, M.; Zaboli, M. DFT Calculations and Molecular Dynamics Simulation Study on the Adsorption of 5-Fluorouracil Anticancer Drug on Graphene Oxide Nanosheet as a Drug Delivery Vehicle. J. Inorg. Organomet. Polym. 2017, 27(3), 805–817.
  • Hasanzade, Z.; Raissi, H. Density Functional Theory Calculations and Molecular Dynamics Simulations of the Adsorption of Ellipticine Anticancer Drug on Graphene Oxide Surface in Aqueous Medium as Well as under Controlled pH Conditions. J. Mol. Liq. 2018, 255, 269–278. DOI: 10.1016/j.molliq.2018.01.159.
  • Tang, H.; Zhao, Y.; Shan, S.; Yang, X.; Liu, D.; Cui F.; Xing B. Theoretical Insight into the Adsorption of Aromatic Compounds on Graphene Oxide. Environ. Sci. 2018, 5, 2357–2367.
  • You, X.; He, M.; Cao, X.; Wang, P.; Wang, J.; Li, L. Molecular Dynamics Simulations of Removal of Nonylphenol Pollutants by Graphene Oxide: Experimental Study and Modelling. Appl. Surf. Sci. 2019, 475, 621–626. DOI: 10.1016/j.apsusc.2019.01.006.
  • Chang, S.; Zhang, Q.; Lu, Y.; Wu, S.; Wang, W. High-efficiency and Selective Adsorption of Organic Pollutants by Magnetic CoFe2O4/graphene Oxide Adsorbents: Experimental and Molecular Dynamics Simulation Study. Sep. Purif. Technol. 2020, 238, 116400. DOI: 10.1016/j.seppur.2019.116400.
  • Liu, J.; Li, P.; Xiao, H.; Zhang, Y.; Shi, X.; Lü, X.; Chen, X. Understanding Flocculation Mechanism of Graphene Oxide for Organic Dyes from Water: Experimental and Molecular Dynamics Simulation. AIP Adv. 2015, 5(11), 117151.
  • Williams, C. D.; Carbone, P. Selective Removal of Technetium from Water Using Graphene Oxide Membranes. Environ. Sci. Technol. 2016, 50(7), 3875–3881. DOI: 10.1021/acs.est.5b06032.
  • DeFever, R. S.; Geitner, N. K.; Bhattacharya, P.; Ding, F.; Ke, P. C.; Sarupria, S. PAMAM Dendrimers and Graphene: Materials for Removing Aromatic Contaminants from Water. Environ. Sci. Technol. 2015, 49(7), 4490–4497.
  • Borges, D. D.; Woellner, C. F.; Autreto, P. A. S.; Galvao, D. S. Water/Alcohol Separation in Graphene Oxide Membranes: Insights from Molecular Dynamics and Monte Carlo Simulations. MRS Advances. 2018, 3(1–2), 109–114.
  • Bong, J.; Lim, T.; Seo, K.; Kwon, C.-A.; Park, J. H.; Kwak, S. K.; Ju, S. Dynamic Graphene Filters for Selective Gas-water-oil Separation. Sci. Rep. 2015, 5(1), 14321.
  • Bahamon, D.; Vega, L. F. Molecular Simulations of Phenol and Ibuprofen Removal from Water Using Multilayered Graphene Oxide Membranes. Mol. Phys. 2019, 117(23–24), 3703–3714. DOI: 10.1080/00268976.2019.1662129.
  • Ansari, P.; Azamat, J.; Khataee, A. Separation of Perchlorates from Aqueous Solution Using Functionalized Graphene Oxide Nanosheets: A Computational Study. J. Mater. Sci. 2019, 54(3), 2289–2299. DOI: 10.1007/s10853-018-3045-2.
  • Hou, Y.; Xu, Z.; Yang, X. Interface-Induced Affinity Sieving in Nanoporous Graphenes for Liquid-Phase Mixtures. J. Phys. Chem. C. 2016, 120(7), 4053–4060. DOI: 10.1021/acs.jpcc.5b10287.
  • Shi, Q.; He, Z.; Gupta, K. M.; Wang, Y.; Lu, R. Efficient Ethanol/water Separation via Functionalized Nanoporous Graphene Membranes: Insights from Molecular Dynamics Study. J. Mater. Sci. 2017, 52(1), 173–184.
  • Fang, C.; Wu, H.; Lee, S.-Y.; Mahajan, R. L.; Qiao, R. The Ionized Graphene Oxide Membranes for Water-ethanol Separation. Carbon. 2018, 136, 262–269. DOI: 10.1016/j.carbon.2018.04.077.
  • Foroutan, M.; Zahedi, H.; Soleimani, E. Investigation of Water-oil Separation via Graphene Oxide Membranes: A Molecular Dynamics Study. Colloids Surf. A. 2018, 555, 201–208. DOI: 10.1016/j.colsurfa.2018.07.002.
  • Yu, T.; Xu, Z.; Liu, S.; Liu, H.; Yang, X. Enhanced Hydrophilicity and Water-permeating of Functionalized Graphene-oxide Nanopores: Molecular Dynamics Simulations. J. Membr. Sci. 2018, 550, 510–517. DOI: 10.1016/j.memsci.2017.10.060.
  • Liu, Q.; Wu, Y.; Wang, X.; Liu, G.; Zhu, Y.; Tu, Y.; Lu, X.; Jin, W. Molecular Dynamics Simulation of Water-ethanol Separation through Monolayer Graphene Oxide Membranes: Significant Role of O/C Ratio and Pore Size. Sep. Purif. Technol. 2019, 224, 219–226. DOI: 10.1016/j.seppur.2019.05.030.
  • Li, W.; Wu, W.; Li, Z. Controlling Interlayer Spacing of Graphene Oxide Membranes by External Pressure Regulation. ACS Nano. 2018, 12(9), 9309–9317. DOI: 10.1021/acsnano.8b04187.
  • Zhou, K.-G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J.; et al. Electrically Controlled Water Permeation through Graphene Oxide Membranes. Nature. 2018, 559(7713), 236–240.
  • Ying, Y.; Ying, W.; Guo, Y.; Peng, X. Cross-flow-assembled Ultrathin and Robust Graphene Oxide Membranes for Efficient Molecule Separation. Nanotechnology. 2018, 29(15), 155602.
  • Thebo, K. H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.-M.; Ren, W. Highly Stable Graphene-oxide-based Membranes with Superior Permeability. Nat. Commun. 2018, 9(1), 1486.
  • Lee, C. S.; Choi, M.; Hwang, Y. Y.; Kim, H.; Kim, M. K.; Lee, Y. J. Facilitated Water Transport through Graphene Oxide Membranes Functionalized with Aquaporin-Mimicking Peptides. Adv.Mate. 2018, 30(14), 1705944.
  • Xu, W. L.; Fang, C.; Zhou, F.; Song, Z.; Liu, Q.; Qiao, R.; Yu, M. Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification. Nano Lett. 2017, 17(5), 2928–2933.
  • Liu, H.; Wang, H.; Zhang, X. Facile Fabrication of Freestanding Ultrathin Reduced Graphene Oxide Membranes for Water Purification. Adv.Mate. 2015, 27(2), 249–254. DOI: 10.1002/adma.v27.2.
  • Huang, L.; Li, Y.; Zhou, Q.; Yuan, W.; Shi, G. Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents. Adv.Mate. 2015, 27(25), 3797–3802.
  • Tang, Y. P.; Paul, D. R.; Chung, T. S. Free-standing Graphene Oxide Thin Films Assembled by a Pressurized Ultrafiltration Method for Dehydration of Ethanol. J. Membr. Sci. 2014, 458, 199–208. DOI: 10.1016/j.memsci.2014.01.062.
  • Li, B.; Cui, Y.; Japip, S.; Thong, Z.; Chung, T.-S. Graphene Oxide (GO) Laminar Membranes for Concentrating Pharmaceuticals and Food Additives in Organic Solvents. Carbon. 2018, 130, 503–514. DOI: 10.1016/j.carbon.2018.01.040.
  • Tang, Y. P.; Chan, J. X.; Chung, T. S.; Weber, M.; Staudt, C.; Maletzko, C. Simultaneously Covalent and Ionic Bridging Towards Antifouling of GO-imbedded Nanocomposite Hollow Fiber Membranes. J. Mater. Chem. A. 2015, 3(19), 10573–10584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.