278
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Highly reusable Cu2O/PP fibrous membranes for oil/water separation

, , &
Pages 168-177 | Received 14 May 2020, Accepted 04 Jun 2020, Published online: 25 Jun 2020

References

  • Kwon, G.; Kota, A. K.; Li, Y. X.; Sohani, A.; Mabry, J. M.; Tuteja, A. On‐demand Separation of Oil‐water Mixtures. Adv. Mater. 2012, 24(27), 3666–3671.
  • Pendergast, M. M.; Hoek, E. M. V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4(6), 1946–1971.
  • Zhu, Y. Z.; Wang, D.; Jiang, L.; Jin, J. Recent Progress in Developing Advanced Membranes for Emulsified Oil/water Separation. NPG Asia Mater. 2014, 6, e101.
  • Kang, H. J.; Cheng, Z. J.; Lai, H.; Ma, H. X.; Liu, Y. Y.; Mai, X. M.; Wang, Y. S.; Shao, Q.; Xiang, L. C.; Guo, X. K. Superlyophobic Anti-corrosive and Self-cleaning Titania Robust Mesh Membrane with Enhanced Oil/water Separation. Sep. Purif. Technol. 2018, 201, 193–204.
  • Sokker, H. H.; El-Sawy, N. M.; Hassan, M. A.; El-Anadouli, B. E. Adsorption of Crude Oil from Aqueous Solution by Hydrogel of Chitosan Based Polyacrylamide Prepared by Radiation Induced Graft Polymerization. J. Hazard. Mater. 2011, 190(1–3), 359–365.
  • Wang, D.; Li, D. W.; Lv, P. F.; Xu, Y.; Wei, Q. F. Deposition of Polytetrafluoroethylene Nanoparticles on Graphene Oxide/polyester Fabrics for Oil Adsorption. Surf. Eng. 2019, 35(5), 426–434.
  • Etchepare, R.; Oliveira, H.; Azevedo, A.; Rubio, J. Separation of Emulsified Crude Oil in Saline Water by Dissolved Air Flotation with Micro and Nanobubbles. Sep. Purif. Technol. 2017, 186, 326–332.
  • Chakrabarty, B.; Ghoshal, A. K.; Purkait, M. K. Ultrafiltration of Stable Oil-in-water Emulsion by Polysulfone Membrane. J. Ind. Text. 2008, 325(1), 427–437.
  • Ge, D. T.; Yang, L. L.; Wang, C. B.; Lee, E.; Zhang, Y. Q.; Yang, S. A Multi-functional Oil-water Separator from A Selectively Pre-wetted Superamphiphobic Paper. Chem. Commun. 2015, 51(28), 6149–6152.
  • Zhang, W. B.; Zhu, Y. Z.; Liu, X.; Wang, D.; Li, J. Y.; Jiang, L.; Jin, J. Salt‐induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA‐g‐PVDF Membranes for Effective Separation of Oil‐in‐water Emulsions. Angew. Chem. Int. Edit. 2014, 53(3), 856–860.
  • He, S. J.; Zhan, Y. Q.; Bai, Y. L.; Hu, J. X.; Li, Y. Z.; Zhang, G. Y.; Zhao, S. M. Gravity-driven and High Flux Super-hydrophobic/super-oleophilic Poly (Arylene Ether Nitrile) Nanofibrous Composite Membranes for Efficient Water-in-oil Emulsions Separation in Harsh Environments. Compos. Pt. B. Eng. 2019, 177, UNSP107439.
  • Khalaf, D. M.; Elkatlawy, S. M.; Sakr, A. H. A.; Ebrahim, S. M. Enhanced Oil/water Separation via Electrospun Poly (Acrylonitrile‐co‐vinyl Acetate)/single‐wall Carbon Nanotubes Fibrous Nanocomposite Membrane. J. Appl. Polym. Sci. 2020, 137: e49033.
  • Crick, C. R.; Gibbins, J. A.; Parkin, I. P. Superhydrophobic Polymer-coated Copper-mesh; Membranes for Highly Efficient Oil-water Separation. J. Mater. Chem. A. 2013, 1(19), 5943–5948.
  • Dhand, V.; Hong, S. K.; Li, L.; Kim, J. M.; Kim, S. H.; Rhee, K. Y.; Lee, H. W. Fabrication of Robust, Ultrathin and Light Weight, Hydrophilic, PVDF-CNT Membrane Composite for Salt Rejection. Compos. Pt. B. Eng. 2019, 160, 632–643.
  • Padaki, M.; Murali, R. S.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F. Membrane Technology Enhancement in Oil-water Separation. A Review. Desalination. 2015, 357, 197–207.
  • Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B. A Super‐hydrophobic and Super‐oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. Int. Edit. 2004, 43(15), 2012–2014.
  • Luo, M. Y.; Yao, C. J.; Zhai, S. X.; Jin, K. L.; Huang, X. O.; Zhou, M.; Liu, A. R.; Xu, B.; Cai, Z. S. Design and Preparation of Mixed Special Wettability Fabrics Based on Backed Weave for Separation of Light Oil/water/heavy Oil Mixtures. J. Ind. Text. 2020, 1528083719900933.
  • Yu, T. L.; Mathias, D.; Lu, S. X.; Xu, W. G.; Naushad, M.; Szunerits, S.; Boukherroub, R. Functionalized MoS2/polyurethane Sponge: Anefficient Scavenger for Oil in Water. Sep. Purif. Technol. 2020, 238, 116420.
  • Wang, C. F.; Huang, H. C.; Chen, L. T. Protonated Melamine Sponge for Effective Oil/water Separation. Sci. Rep. 2015, 5, 14294.
  • Wei, Z. M.; Lian, Y. F.; Wang, X. J.; Long, S. R.; Yang, J. A Novel High-durability Oxidized Poly (Arylene Sulfide Sulfone) Electrospun Nanofibrous Membrane for Direct Water-oil Separation. Sep. Purif. Technol. 2020, 234, 116012.
  • Guo, J. W.; Lin, Z. Y.; Chang, C. J.; Lu, C. H.; Chen, J. K. Protein Valves Prepared by Click Reaction Grafting of Poly (N-isopropylacrylamide) to Electrospun Poly (Vinyl Chloride) Fibrous Membranes. Appl. Surf. Sci. 2018, 439, 313–322.
  • Zhang, L. H.; Duan, X. P.; Yan, X.; Yu, M.; Ning, X.; Zhao, Y.; Long, Y. Z. Recent Advances in Melt Electrospinning. RSC Adv. 2016, 6(58), 53400–53414.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A. Progress in the Field of Electrospinning for Tissue Engineering Applications. Adv. Mater. 2009, 21(32–33), 3343–3351.
  • Daenicke, J.; Lämmlein, M.; Steinhübl, F.; Schubert, D. W. Revealing Key Parameters to Minimize the Diameter of Polypropylene Fibers Produced in the Melt Electrospinning Process. e-Polymers. 2019, 19(1), 330–340.
  • Shen, Y.; Xia, S. A.; Yao, P. F.; Gong, R. H.; Liu, Q. S.; Deng, B. Y. Structure Regulation and Properties of Melt-electrospinning Composite Filter Materials. Fiber. Polym. 2017, 18(8), 1568–1579.
  • Zakaria, M.; Nakane, K. Fabrication of Polypropylene Nanofibers from Polypropylene/Polyvinyl Butyral Blend Films Using Laser‐Assisted Melt‐Electrospinning. Polym. Eng. Sci. 2019, 60(2), 362–370.
  • Kansara, A. M.; Chaudhri, S. G.; Singh, P. S. A Facile One-step Preparation Method of Recyclable Superhydrophobic Polypropylene Membrane for Oil-water Separation. RSC Adv. 2016, 6(66), 61129–61136.
  • Kao, T. H.; Chen, J. K.; Cheng, C. C.; Su, C. J.; Chang, F. C. Low-surface-free-energy Polybenzoxazine/polyacrylonitrile Fibers for Biononfouling Membrane. Polymer. 2013, 54(1), 258–268.
  • Lin, Y. K.; Chen, G.; Yang, J.; Wang, X. L. Formation of Isotactic Polypropylene Membranes with Bicontinuous Structure and Good Strength via Thermally Induced Phase Separation Method. Desalination. 2009, 236(1–3), 8–15.
  • Lang, X. H.; Zhu, T. Y.; Zou, L.; Prakashan, K.; Zhang, Z. X. Fabrication and Characterization of Polypropylene Aerogel Material and Aerogel Coated Hybrid Materials for Oil-water Separation Applications. Prog. Org. Coat. 2019, 137, 105370.
  • Sun, Y.; Yang, Z. S.; Li, L.; Wang, Z. Y.; Sun, Q. C. Facile Preparation of Isotactic Polypropylene Microporous Membranes with Bioinspired Hierarchical Morphology for Nano-scale Water-in-oil Emulsion Separation. J. Membr. Sci. 2019, 581, 224–235.
  • Wang, G. W.; Niu, J. Y.; Asoh, T. A.; Uyama, H. Facile Fabrication of an Elastics Maleic Anhydride-grafted Polypropylene Monolith for Oil/water Separation. Mater. Today Commun. 2019, 21, 100654.
  • Deng, W.; Li, C.; Pan, F. P.; Li, Y. Efficient Oil/water Separation by a Durable Underwater Superoleophobic Mesh Membrane with TiO2 Coating via Biomineralization. Sep. Purif. Technol. 2019, 222, 35–44.
  • Ma, W. J.; Zhang, M. J.; Li, Y. S.; Kang, M. M.; Huang, C. B.; Fu, G. D. Flexible, Durable and Magnetic Nanofibrous Membrane with pH-switchable Wettability for Efficient On-demand Oil/water Separation. Environ. Sci. Nano. 2019, 6(12), 3699–3711.
  • Pan, Z. H.; Cao, S. J.; Li, J. F.; Du, Z. P.; Cheng, F. Q. Anti-fouling TiO2 Nanowires Membrane for Oil/water Separation: Synergetic Effects of Wettability and Pore Size. J. Membr. Sci. 2019, 572, 596–606.
  • Guo, Y. B.; Yang, L.; Wang, D. G. Preparation and Hydrophobic Behaviours of Polystyrene Composite Coating. Surf. Eng. 2016, 32(2), 95–101.
  • de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. Cu2O: A Catalyst for the Photochemical Decomposition of Water? Chem. Commun. 1999, 12, 1069–1070.
  • He, J. B.; Zhang, M.; Primo, A.; García, H.; Li, Z. H. Selective Photocatalytic Benzene Hydroxylation to Phenol Using Surface-modified Cu2O Supported on Graphene. J. Mater. Chem. A. 2018, 6(40), 19782–19787.
  • Sun, F.; Wang, Z. C. Highly-branched Dendrite Cuprous Oxide Films for Non-enzymatic Amperometric Glucose Sensor. Mater. Lett. 2019, 234, 62–65.
  • Yang, Y. M.; Wang, K.; Yang, Z. H.; Zhang, Y. M.; Gu, H. Y.; Zhang, W. X.; Li, E. R.; Zhou, C. An Efficient Route to Cu2O Nanorod Array Film for High-performance Li-ion Batteries. Thin Solid Films. 2016, 608, 79–87.
  • Adilov, S. R.; Afanaciev, V. P.; Kashkul, I. N.; Kumekov, S. E.; Mukhin, N. V.; Terukov, E. I. Studying the Composition and Structure of Films Obtained by Thermal Oxidation of Copper. Glass. Phy. Chem. 2017, 43(3), 272–275.
  • Zheng, Z. K.; Huang, B. B.; Wang, Z. Y.; Guo, M.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Dai, Y. Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions. J. Phys. Chem. C. 2009, 113(32), 14448–14453.
  • Ikenoue, T.; Kawai, T.; Wakashima, R.; Miyake, M.; Hirato, T. Hole Mobility Improvement in Cu2O Thin Films Prepared by the Mist CVD Method. Appl. Phys. Express. 2019, 12(5), 055509.
  • Martínez-Saucedo, G.; Castanedo-Pérez, R.; Torres-Delgado, G.; Mendoza-Galván, A.; Ángel, O. Z. Cuprous Oxide Thin Films Obtained by Dip-coating Method Using Rapid Thermal Annealing Treatments. Mater. Sci. Semicond. Process. 2017, 68, 133–139.
  • Ravichandiran, C.; Sakthivelu, A.; Davidprabu, R.; Kumar, K. D. A.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; AlFaify, S. The Effect of Rare Earth Nd3+ Doping on Physical Characteristics of Cu2O Thin Films Derived by Electrodeposition Technique. Thin Solid Films. 2019, 683, 82–89.
  • Kelly, P. J.; Arnell, R. D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum. 2000, 56(3), 159–172.
  • Zhu, H. L.; Zhang, J. Y.; Li, C. Z.; Pan, F.; Wang, T. M.; Huang, B. B. Cu2O Thin Films Deposited by Reactive Direct Current Magnetron Sputtering. Thin Solid Films. 2009, 517(19), 5700–5704.
  • Li, J. L.; Huang, Z. Q.; Xue, C.; Zhao, Y. X.; Hao, W. B.; Yang, G. D. Facile Preparation of Novel Hydrophobic Sponges Coated by Cu2O with Different Crystal Facet Structure for Selective Oil Absorption and Oil/water Separation. J. Mater. Sci. 2018, 53(14), 10025–10038.
  • Azimi, G.; Dhiman, R.; Kwon, H. M.; Paxson, A. T.; Varanasi, K. K. Hydrophobicity of Rare-earth Oxide Ceramics. Nat. Mater. 2013, 12(4), 315–320.
  • Li, Y.; Yan, L. F.; Wang, G. C. Adsorption and Dissociation of H2O on Cu2O (100): A Computational Study. J. Nat. Gas. Chem. 2011, 20(2), 155–161.
  • Lobo, A.; Conrad, H. Interaction of H2O with the RuO2 (110) Surface Studied by HREELS and TDS. Surf. Sci. 2003, 523(3), 279–286.
  • Shirazy, M. R. S.; Blais, S.; Fréchette, L. G. Mechanism of Wettability Transition in Copper Metal Foams: From Superhydrophilic to Hydrophobic. Appl. Surf. Sci. 2012, 258(17), 6416–6424.
  • Zhang, R. G.; Li, J. R.; Wang, B. J.; Ling, L. X. Fundamental Studies about the Interaction of Water with Perfect, Oxygen-vacancy and Pre-covered Oxygen Cu2O (111) Surfaces: Thermochemistry, Barrier, Product. Appl. Surf. Sci. 2013, 279, 260–271.
  • Muthukumar, K.; Jacob, Kaleekkal, N. J.; Lakshmi, D. S.; Srivastava, S.; Bajaj, H. Tuning the Morphology of PVDF Membranes Using Inorganic Clusters for Oil/water Separation. J. Appl. Polym. Sci. 2019, 136(24), 47641.
  • Baig, N.; Saleh, T. A. Superhydrophobic Polypropylene Functionalized with Nanoparticles for Efficient Fast Static and Dynamic Separation of Spilled Oil from Water. Global Challenges. 2019, 3(8), 1800115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.