189
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effect of a polarizing magnetic field on the dynamic properties and the specific absorption rate of a ferrofluid in the microwave range

, , &
Pages S19-S29 | Received 07 Aug 2021, Accepted 26 Aug 2021, Published online: 25 Sep 2021

References

  • Rosensweig, R. E. Ferrohydrodynamics; Cambridge University Press: Cambridge, 1985.
  • Mihalca, I.; Ercuta, A.; Ionascu, C. The Villari Effect in Fe–Cr–B Amorphous Ribbons, Sens. Actuators A, Phys. 2003, 106(1–3), 61–64. DOI: 10.1016/S0924-4247(03)00134-1.
  • Chantrell, R. W.; Popplewell, J.; Charles, S. W. Measurements of Particle Size Distribution Parameters in Ferrofluids. IEEE Trans. Magn. 1978, 14(5), 975–977. DOI: 10.1109/TMAG.1978.1059918.
  • Fannin, P. C. Use of Ferromagnetic Resonance Measurements in Magnetic Fluids. J. Mol. Liquids. 2004, 114(1–3), 79–87. DOI: 10.1016/j.molliq.2004.02.020.
  • Fannin, P. C. Wideband Measurement and Analysis Techniques for the Determination of the Frequency-dependent, Complex Susceptibility of Magnetic Fluids. Adv. Chem. Phys. 1998, 104, 181–292. DOI: 10.1002/9780470141632.ch3.
  • Malaescu, I.; Marin, C. N. Study of Magnetic Fluids by Means of Magnetic Spectroscopy. Physica B Condens. Matter. 2005, 365(1–4), 134–140. DOI:10.1016/j.physb.2005.05.006.
  • Dubreuil, J.; Bobowski, J. S. Ferromagnetic Resonance in the Complex Permeability of an Fe3O4-based Ferrofluid at Radio and Microwave Frequencies. J. Magn. Magn. Mater. 2019, 489, 165387. DOI: 10.1016/j.jmmm.2019.165387.
  • Yu. L., R.; Shliomis, M. I. Relaxation Phenomena in Condensed Matter. Adv. Chem. Phys. 1994, 87, 595–751.
  • Fannin, P. C.; Marin, C. N.; Malaescu, I.; Stefu, N. An Investigation of the Microscopic and Macroscopic Properties of Magnetic Fluids. Physica B. 2007, 388(1–2), 87–92. DOI: 10.1016/j.physb.2006.05.008.
  • Landau, L. D.; Lifshitz, E. M.; Sovjetunion, P. Z. Reprinted in Collected Works of Landau; 1935. 153–169. Pergamon Press: London, 1965, no. 18. Vol. 8.
  • Fannin, P. C.; Marin, C. N.; Malaescu, I. The Influence of Particle Concentration and Polarizing Field on the Resonant Behaviour of Magnetic Fluids. J. Phys. Condensed Matter. 2003, 15(27), 4739–4750. DOI: 10.1088/0953-8984/15/27/307.
  • Maiorov, M. M. Experimental Study of the Permeability of a Ferrofluid in an Alternating Magnetic Field. Magnetohydrodynamics. 1979, 15(2), 135–139. (translated from Magnitnaya Gidrodinamica, 15 (2), 21-26).
  • Fannin, P. C.; Scaife, B. K. P.; Charles, S. W. A Study of the Complex Ac Susceptibility of Magnetic Fluids Subjected to A Constant Polarizing Magnetic-field. J. Magn. Magn. Mater. 1990, 85(1–3), 54–56. DOI: 10.1016/0304-8853(90)90016-J.
  • Dormann, J. L.; Fiorani, D.; Tronc, E. On the Models for Interparticle Interactions in Nanoparticle Assemblies: Comparison with Experimental Results. J. Magn. Magn. Mater. 1999, 202(1), 251–267. DOI: 10.1016/S0304-8853(98)00627-1.
  • Brown, W. F. Thermal Fluctuations of a Single‐Domain Particle. J. Appl. Phys. 1963, 34(4), 1319–1320. DOI: 10.1063/1.1729489.
  • Fannin, P. C. Characterisation of Magnetic Fluids. J. Alloys Compd. 2004, 369(1–2), 43–51. DOI: 10.1016/j.jallcom.2003.09.059.
  • Fannin, P. C.; Yu. L., R.; Giannitsis, A. T.; Charles, S. W. Investigation of the Influence Which Material Parameters Have on the Signal-to-noise Ratio of Nanoparticles. J. Magn. Magn. Mater. 2002, 252(1–3), 114–116. DOI: 10.1016/S0304-8853(02)00602-9.
  • Marin, C. N.; Malaescu, I.; Fannin, P. C. Theoretical Evaluation of the Heating Rate of Ferrofluids. J. Therm. Anal. Calorim. 2015, 119(2), 1199–1203. DOI: 10.1007/s10973-014-4224-2.
  • Rosensweig, R. E. Heating Magnetic Fluid with Alternating Magnetic Field. J. Magn. Magn. Mater. 2002, 252, 370–374. DOI: 10.1016/S0304-8853(02)00706-0.
  • Brazel, C. S. Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-sensitive Polymers for Triggered Drug Release. Pharm. Res. 2009, 26(3), 644–656. DOI: 10.1007/s11095-008-9773-2.
  • Pradhan, P.; Giri, J.; Banerjee, R.; Bellare, J.; Bahadur, D. Preparation and Characterization of Manganese Ferrite-based Magnetic Liposomes for Hyperthermia Treatment of Cancer. J. Magn. Magn. Mater. 2007, 311(1), 208–215. DOI: 10.1016/j.jmmm.2006.10.1179.
  • Iacob, N.; Schinteie, G.; Palade, P.; Ticos, C. M.; Kuncser, V. Stepped Heating Procedure for Experimental SAR Evaluation of Ferrofluids. Eur. Phys. J. E. 2015, 38(6). DOI: 10.1140/epje/i2015-15057-8. article no. 57.
  • Ondeck, C. L.; Habib, A. H.; Ohodnicki, P.; Miller, K.; Sawyer, C. A.; Chaudhary, P.; McHenry, M. E. Theory of Magnetic Fluid Heating with an Alternating Magnetic Field with Temperature Dependent Materials Properties for Self-regulated Heating. J. Appl. Phys. 2009, 105(7), 07B324. DOI: 10.1063/1.3076043.
  • Mishra, M.; Singh, A. P.; Singh, B. P.; Singh, V. N.; Dhawan, S. K. Conducting Ferrofluid: A High-performance Microwave Shielding Material. J. Mater. Chem. A. 2014, 2(32), 13159–13168. DOI: 10.1039/C4TA01681E.
  • Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A. On the Reliable Measurement of Specific Absorption Rates and Intrinsic Loss Parameters in Magnetic Hyperthermia Materials. J. Phys. D: Appl. Phys. art. no. 495003. 2014, 47(49), 1–14. DOI: 10.1088/0022-3727/47/49/495003.
  • Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q. A. Suitability of Commercial Colloids for Magnetic Hyperthermia. J. Magn. Magn. Mater. 2009, 321(10), 1509–1513. DOI: 10.1016/j.jmmm.2009.02.075.
  • Garaio, E.; Sandre, O.; Collantes, J. M.; Garcia, J. A.; Mornet, S.; Plazaola, F. Specific Absorption Rate Dependence on Temperature in Magnetic Field Hyperthermia Measured by Dynamic Hysteresis Losses (Ac Magnetometry). Nanotechnology. art. no. 015704. 2015, 26(1), 1–18. DOI: 10.1088/0957-4484/26/1/015704.
  • Burnham, P.; Dollahon, N.; Li, C. H.; Viescas, A. J.; Papaefthymiou, G. C. Magnetization and Specific Absorption Rate Studies of Ball-milled Iron Oxide Nanoparticles for Biomedicine. J. Nanopart. 2013, 181820, 13. DOI: 10.1155/2013/181820.
  • Gabor, L.; Minea, R.; Gabor, D. RO Patent 108851. 1994.
  • Susan-Resiga, D.; Malaescu, I.; Marinica, O.; Marin, C. N. Magnetorheological Properties of a Kerosene-based Ferrofluid with Magnetite Particles Hydrophobized in the Absence of the Dispersion Medium. art. no. 412150. 2020, 587, 1–8. Physica B, Condens. Matter. DOI: 10.1016/j.physb.2020.412150.
  • Fannin, P. C.; Relihan, T.; Charles, S. W. Investigation of Ferromagnetic Resonance in Magnetic Fluids by Means of the Short-circuited Coaxial Line Technique. J. Phys. D: Appl. Phys. 1995, 28(10), 2003–2006. DOI: 10.1088/0022-3727/28/10/001.
  • Fannin, P. C.; MacOireachtaigh, C.; Couper, C. An Improved Technique for the Measurement of the Complex Susceptibility of Magnetic Colloids in the Microwave Region. J. Magn. Magn. Mater. 2010, 322(16), 2428–2433. DOI: 10.1016/j.jmmm.2010.02.051.
  • Fannin, P. C.; Marin, C. N.; Couper, C. The Resonance Decay Function Method in the Determination of the Pre-factor of the Néel Relaxation Time of Single-domain Nanoparticles, J. Magn. Magn. Mater. 2011, 323(10), 1242–1245. DOI: 10.1016/j.jmmm.2010.11.014.
  • Bickford, L. R. Ferromagnetic Resonance Absorption in Magnetite Single Crystals. Phys. Rev. 1950, 78(4), 449–457. DOI: 10.1103/PhysRev.78.449.
  • Fannin, P. C.; Marin, C. N. Determination of the Landau-Lifshitz Damping Parameter by Means of Complex Susceptibility Measurements. J. Magn. Magn. Mater. 2006, 299(2), 425–429. DOI: 10.1016/j.jmmm.2005.05.011.
  • Shliomis, M. I.; Raikher, Y. L. Experimental Investigations of Magnetic Fluids. IEEE Trans. Magn. Magn. 1980, 16(2), 237–250. DOI: 10.1109/TMAG.1980.1060590.
  • Raikher, Y. L.; Stepanov, V. I. Intrinsic Magnetic Resonance in Nanoparticles: Landau Damping in the Collision Less Regime. J. Magn. Magn. Mater. 2002, 242 part 2, 1021–1023. DOI: 10.1016/S0304-8853(01)01358-0.
  • Fannin, P. C.; Marin, C. N.; Socoliuc, V.; Istratuca, G. M.; Giannitsis, A. T. The Effect of Colloidal Stabilization upon Ferrimagnetic Resonance in Magnetic Fluids in the Presence of a Polarizing Magnetic Field. J. Phys. D: Appl. Phys. 2003, 36(11), 1227–1235. DOI: 10.1088/0022-3727/36/11/301.
  • Fannin, P. C.; Marin, C. N.; Couper, C. Precessional Decay Time of Nanoparticles in Magnetic Fluids. J. Magn. Magn. Mater. 2010, 322(9–12), 1682–1685. DOI: 10.1016/j.jmmm.2009.03.025.
  • Debye, P. Polar Molecules, The Chemical Catalog Company; New York:The Chemical Catalog Company, Inc., 1929.
  • Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Ivkov, R.; Foreman, A. R.; Lau, J. W.; Goernitz, E.; Gruettner, C. The Influence of Collective Behavior on the Magnetic and Heating Properties of Iron Oxide Nanoparticles. J. Appl. Phys. art. no. 07A319. 2008, 103(7), 07A319. DOI: 10.1063/1.2837647.
  • Urtizberea, A.; Natividad, E.; Arizaga, A.; Castro, M.; Mediano, A. Specific Absorption Rates and Magnetic Properties of Ferrofluids with Interaction Effects at Low Concentrations. J. Phys. Chem. C. 2010, 114(11), 4916–4922. DOI: 10.1021/jp912076f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.