442
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soft magnetic composites of carbon fibers decorated with magnetite in an epoxy matrix

ORCID Icon, , , &
Pages S59-S67 | Received 12 Aug 2021, Accepted 29 Oct 2021, Published online: 11 Nov 2021

References

  • Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S. N. Spintronics Based Random Access Memory: A Review. Mater. Today. 2017, 20(9), 530–548.
  • Diegel, M.; Mattheis, R.; Halder, E. 360° Domain Wall Investigation for Sensor Applications. IEEE Trans. Magn. 2004, 40(4II), 2655–2657. DOI: 10.1109/TMAG.2004.830434.
  • Brandao, J.; Atkinson, D. Controlling the Stability of Both the Structure and Velocity of Domain Walls in Magnetic Nanowires. Appl. Phys. Lett. 2016, 109(68), 062405. DOI: 10.1063/1.4960201.
  • Zhan, Y.; Long, Z.; Wan, X.; Zhang, J.; He, S.; He, Y. 3D Carbon Fiber mats/nano-Fe3O4 Hybrid Material with High Electromagnetic Shielding Performance. Appl. Surf. Sci. 2018, 444, 710–720. DOI: 10.1016/j.apsusc.2018.03.006.
  • Ohkoshi, S. I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. Innentitelbild: A Millimeter-Wave Absorber Based on Gallium-Substituted Ɛ-iron Oxide Nanomagnets. Angewandte Chemie. 2007, 119(44), 8456-8456. DOI: 10.1002/ange.200790223.
  • Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv.Mate. 2013, 25(9), 1296–1300. DOI: 10.1002/adma.201204196.
  • Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-absorption of Short Carbon Fiber/silica Composites. Carbon. 2010, 48(3), 788–796. DOI: 10.1016/j.carbon.2009.10.028.
  • Lee, J.; Jung, B. M.; Lee, S. B.; Lee, S. K.; Kim, K. H. FeCoNi Coated Glass Fibers in Composite Sheets for Electromagnetic Absorption and Shielding Behaviors. Appl. Surf. Sci. 2017, 415, 99–103. DOI: 10.1016/j.apsusc.2016.11.079.
  • Gao, S.-L.; Mäder, E.; Zhandarov, S. F. Carbon Fibers and Composites with Epoxy Resins: Topography, Fractography and Interphases. Carbon. 2004, 42(3), 515–529. DOI: 10.1016/j.carbon.2003.12.085.
  • Gao, B.; Zhang, J.; Hao, Z.; Huo, L.; Zhang, R.; Shao, L. In-situ Modification of Carbon Fibers with Hyperbranched Polyglycerol via Anionic Ring-opening Polymerization for Use in High-performance Composites. Carbon. 2017, 123, 548–557. DOI: 10.1016/j.carbon.2017.08.008.
  • Kromoser, B.; Preinstorfer, P.; Kollegger, J. Building Lightweight Structures with Carbon‐fiber‐reinforced Polymer‐reinforced Ultra‐high‐performance Concrete: Research Approach, Construction Materials, and Conceptual Design of Three Building Components. Struct Concrete. 2018, 20(2), 730–744. DOI: 10.1002/suco.201700225.
  • Thakur, P.; Singh, K. A Review: Effect Of Carbon Fiber On Different Mixes Of Concrete. Int. Res. J. Eng. Technol. 2018, 5(3), 3996–3999.
  • Kumar, T. V.; Prasad, V. M. M.; Santhosh, D.; Prasanth, C.; Ranjith, K. Evaluation of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Polymer (CFRP) Composite Materials. Mater. Today Proc. 2020, 21(1), 477–482.
  • Jia, Z.; Li, T.; Chiang, F.-P.; Wang, L. An Experimental Investigation of the Temperature Effect on the Mechanics of Carbon Fiber Reinforced Polymer Composites. Compos. Sci. Technol. 2018, 154, 53–63. DOI: 10.1016/j.compscitech.2017.11.015.
  • Wang, Y.; Zhupanska, O. I. Lightning Strike Thermal Damage Model for Glass Fiber Reinforced Polymer Matrix Composites and Its Application to Wind Turbine Blades. Compos. Struct. 2015, 132, 1182–1191. DOI: 10.1016/j.compstruct.2015.07.027.
  • Thomsen, O. T. Sandwich Materials for Wind Turbine Blades — Present and Future. J. Sandwich Struct. Mater. 2009, 11(1), 7–26.
  • Neamţu, B. V.; Nasui, M.; Marinca, T. F.; Popa, F.; Chicinaş, I. Soft Magnetic Composites Based on Hybrid Coated Fe-Si Nanocrystalline Powders. Surf. Coat. Technol. 2017, 330, 219–227. DOI: 10.1016/j.surfcoat.2017.09.088.
  • Birčáková, Z.; Kollár, P.; Füzer, J.; Bureš, R.; Fáberová, M. Magnetic Properties of Selected Fe-based Soft Magnetic Composites Interpreted in Terms of Jiles-Atherton Model Parameters. J. Magn. Magn. Mater. 2020, 502, 166514. DOI: 10.1016/j.jmmm.2020.166514.
  • Neamţu, B. V.; Geoffroy, O.; Chicinaş, I.; Isnard, O. AC Magnetic Properties of the Soft Magnetic Composites Based on Supermalloy Nanocrystalline Powder Prepared by Mechanical Alloying. Mater. Sci. Eng. 2012, 177(9), 661–665. DOI: 10.1016/j.mseb.2012.03.029.
  • Xu, W.; Wu, C.; Yan, M. Preparation of Fe–Si–Ni Soft Magnetic Composites with Excellent High-frequency Properties. J. Magn. Magn. Mater. 2015, 381, 116–119. DOI: 10.1016/j.jmmm.2014.12.073.
  • Birčáková, Z.; Füzer, J.; Kollár, P.; Szabó, J.; Jakubčin, M.; Streckova, M.; Bureš, R.; Fáberová, M. Preparation and Characterization of Iron-based Soft Magnetic Composites with Resin Bonded Nano-ferrite Insulation. J. Alloys Compd. 2020, 828, 154416. DOI: 10.1016/j.jallcom.2020.154416.
  • Kemp, S. J.; Ferguson, R. M.; Khandhar, A. P.; Krishnanab, K. M. Monodisperse Magnetite Nanoparticles with Nearly Ideal Saturation Magnetization. RSC Advance. 2016, 6, 77452–77464.
  • Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F. A Review: Synthetic Strategy Control of Magnetite Nanoparticles Production. Adv. Nano Res. 2018, 6(1), 1–19.
  • Li, Q.; Kartikowati, C. W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between Particle Size/domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Sci. Rep. 2017, 7, 1–4.
  • Wallyn, J.; Anton, N.; Vandamme, T. F. Synthesis, Principles, and Properties of Magnetite Nanoparticles for in Vivo Imaging Applications—A Review. Pharmaceutics. 2019, 11(11), 601. DOI: 10.3390/pharmaceutics11110601.
  • Marcelo, G. A.; Lodeiro, C.; Capelo, J. L.; Lorenzo, J.; Oliveira, E. Magnetic, Fluorescent and Hybrid Nanoparticles: From Synthesis to Application in Biosystems. Mater. Sci. Eng C. 2020, 106, 110104. DOI: 10.1016/j.msec.2019.110104.
  • Gu, T.; Zhang, Y.; Khan, S. A.; Hatton, T. A. Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems. Colloid Interface Sci. Commun. 2019, 28, 1–4. DOI: 10.1016/j.colcom.2018.10.005.
  • Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165.
  • Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via Sol–gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31, 3729–3749.
  • Tipsawat, P.; Wongpratat, U.; Phumying, S.; Chanlek, N.; Chokprasombat, K.; Maensiri, S. Magnetite (Fe3o4) Nanoparticles: Synthesis, Characterization and Electrochemical Properties. Appl. Surf. Sci. 2018, 446, 287–292. DOI: 10.1016/j.apsusc.2017.11.053.
  • Lysenko, S. N.; Astaf’eva, S. A.; Yakusheva, D. E.; Balasoiu, M. Novel Parameter Predicting Stability of Magnetic Fluids for Possible Application in Nanocomposite Preparation. Appl. Surf. Sci. 2019, 463, 217–226. DOI: 10.1016/j.apsusc.2018.08.236.
  • Perez, G.; Romero, M. P.; Saitovitch, E. B.; Litterst, F. J.; Araujo, J. F. D. F.; Bell, D. C.; Solorzano, G. Alkali Concentration Effects on the Composition, Morphology and Magnetic Properties of Magnetite, Maghemite and Iron Oxyhydroxide Nanoparticles. Solid State Sci. 2020, 106, 106295. DOI: 10.1016/j.solidstatesciences.2020.106295.
  • Pereira, C.; Pereira, A. M.; Fernandes, C.; Rocha, M.; Mendes, R.; Fernández-García, M. P.; Guedes, A.; Tavares, P. B.; Grenèche, J.-M.; Araújo, J. P., et al. Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chem. Mater. 2012, 24(8), 1496–1504. DOI: 10.1021/cm300301c.
  • Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108(6), 2064–2110.
  • Montes de Oca, J.; Chuquisengo, L.; Alarcón, H. Síntesis y caracterización de nanopartículas de ferrita de cobalto obtenidas por el proceso sol-gel. Rev. Soc. Quim. Perú. 2010, 76(4), 400–406.
  • Raymond, L.; Revol, J.-F.; Ryan, D. H.; Marchessault, R. H. In Situ Synthesis of Ferrites in Cellulosics. Chem. Mater. 1994, 6(2), 249–255. DOI: 10.1021/cm00038a025.
  • Arsalani, N.; Fattahi, H.; Nazarpoor, M. Synthesis and Characterization of PVP-functionalized Superparamagnetic Fe3O4 Nanoparticles as an MRI Contrast Agent. Express Polym. Lett. 2010, 4(6), 329–338. DOI: 10.3144/expresspolymlett.2010.42.
  • Fakhrhoseini, S. M.; Li, Q.; Unnikrishnan, V.; Naebe, M. Nano-magnetite Decorated Carbon Fibre for Enhanced Interfacial Shear Strength. Carbon. 2019, 148, 361–369. DOI: 10.1016/j.carbon.2019.03.078.
  • Jacintho, G. V. M.; Brolo, A. G.; Corio, P.; Suarez, P. A. Z.; Rubim, J. C. Structural Investigation of MFe2O4 (M = Fe, Co) Magnetic Fluids. J. Phys. Chem. 2009, 113(18), 7684–7691.
  • Ferrari, C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B. 2000, 61(20), 14095–14107. DOI: 10.1103/PhysRevB.61.14095.
  • Tuinstra, F.; Koeing, J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. DOI: 10.1063/1.1674108.
  • Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9(11), 1276–1290. DOI: 10.1039/B613962K.
  • Cvejic, Z.; Rakic, S.; Kremenovic, A.; Antic, B.; Jovalekic, C.; Colomban, P. Nanosize Ferrites Obtained by Ball Milling: Crystal Structure, Cation Distribution, Size-strain Analysis and Raman Investigations. Solid State Sci. 2006, 8(8), 908–915. DOI: 10.1016/j.solidstatesciences.2006.02.041.
  • Andideh, M.; Esfandeh, M. Effect of Surface Modification of Electrochemically Oxidized Carbon Fibers by Grafting Hydroxyl and Amine Functionalized Hyperbranched Polyurethanes on Interlaminar Shear Strength of Epoxy Composites. Carbon. 2017, 123, 233–242. DOI: 10.1016/j.carbon.2017.07.035.
  • Mordina, B.; Kumar, R.; Tiwari, R. K.; Setua, D. K.; Sharma, A. Fe3O4 Nanoparticles Embedded Hollow Mesoporous Carbon Nanofibers and Polydimethylsiloxane-based Nanocomposites as Efficient Microwave Absorber. J. Phys. Chem. C. 2017, 121(14), 7810–7820. DOI: 10.1021/acs.jpcc.6b12941.
  • Zhang, X.; Xiang, J.; Wu, Z.; Gong, L.; Chen, X.; Guan, G.; Wang, Y.; Zhang, K. Enhanced Absorbing Properties and Structural Design of Microwave Absorbers Based on Ni0.8Co0.2Fe2O4 Nanofibers and Ni-C Hybrid Nanofibers. J. Alloys Compd. 2018, 764, 691–700. DOI: 10.1016/j.jallcom.2018.06.164.
  • Sanida, A.; Stavropoulos, S. G.; Speliotis, T.; Psarras, G. C. Probing the Magnetoelectric Response and Energy Efficiency in Fe3O4/epoxy Nanocomposites. Polym. Test. 2020, 88, 106560. DOI: 10.1016/j.polymertesting.2020.106560.
  • Han, W.; Zhao, G.; Zhang, X.; Zhou, S.; Wang, P.; An, Y.; Xu, B. Graphene Oxide Grafted Carbon Fiber Reinforced Siliconborocarbonitride Ceramics with Enhanced Thermal Stability. Carbon. 2015, 95, 157–165.
  • Chung, D. D. L. Processing-structure-property Relationships of Continuous Carbon Fiber Polymer-matrix Composites. Mater. Sci. Eng. R Rep. 2017, 113, 1–29.
  • Guo, J.; Lu, C.; An, F.; He, S. Preparation and Characterization of Carbon Nanotubes/carbon Fiber Hybrid Material by Ultrasonically Assisted Electrophoretic Deposition. Mater. Lett. 2012, 66(1), 382–384. DOI: 10.1016/j.matlet.2011.09.022.
  • Xing, L.; Liu, L.; Xie, F.; Huang, Y. Mutual Irradiation Grafting on Indigenous Aramid Fiber-3 in Diethanolamine and Epichlorohydrin and Its Effect on Interfacially Reinforced Epoxy Composite. Appl. Surf. Sci. 2016, 375, 65–73. DOI: 10.1016/j.apsusc.2016.03.073.
  • Li, J.; Cai, C. L. The Carbon Fiber Surface Treatment and Addition of PA6 on Tensile Properties of ABS Composites. Curr. Appl. Phys. 2011, 11(1), 50–54.
  • Kornilitsina, E. V.; Lebedeva, E. A.; Astaf’Eva, S. A.; Trukhinov, D. K. Modification of Carbon Fiber by Magnetite Particles. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047(1), 012051. DOI: 10.1088/1757-899X/1047/1/012051.
  • Zhang, M.; Ding, L.; Zheng, J.; Liu, L.; Alsulami, H.; Kutbi, M. A.; Xu, J. Surface Modification of Carbon Fibers with Hydrophilic Fe3O4 Nanoparticles for Nickel-based Multifunctional Composites. Appl. Surf. Sci. 2020, 509, 145348. DOI: 10.1016/j.apsusc.2020.145348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.