13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of high tenacity bilayer hydrogel with rapid thermal response based on the introduction of sodium alginate and porogen

ORCID Icon, , , & ORCID Icon
Received 19 Aug 2023, Accepted 17 May 2024, Published online: 16 Jun 2024

References

  • Zheng, Q.; Xu, C.; Jiang, Z.; Zhu, M.; Chen, C.; Fu, F. Smart Actuators Based on External Stimulus Response. Front. Chem. 2021, 9, 650358. DOI: 10.3389/fchem.2021.650358.
  • Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Acc. Chem. Res. 2022, 55(11), 1533–1545. DOI: 10.1021/acs.accounts.2c00046.
  • Hao, L.; Mao, H. Magnetically Anisotropic Hydrogels for Tissue Engineering. Biomater. Sci. 2023, 11(19), 6384–6402. DOI: 10.1039/D3BM00744H.
  • Fan, X. S.; Chung, J. Y.; Yong Xiang Lim, Y. X.; Li, Z. B.; Loh, X. J. Review of Adaptive Programmable Materials and Their Bioapplications. ACS Appl. Mater. Interfaces 2016, 8(49), 33351–33370. DOI: 10.1021/acsami.6b09110.
  • Shang, J. J.; Le, X. X.; Zhang, J. W.; Chen, T.; Theato, P. Trends in Polymeric Shape Memory Hydrogels and Hydrogel Actuators. Polym. Chem. 2019, 10, 1036–1055. DOI: 10.1039/C8PY01286E.
  • Le, X. X.; Lu, W.; Zhang, J. W.; Chen, T. Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Adv. Sci. 2019, 6, 1801584. DOI: 10.1002/advs.201801584.
  • Kheirabadi, M.; Bagheri, R.; Kabiri, K. Swelling and Mechanical Behavior of Nanoclay Reinforced Hydrogel: Single Network Vs. Full Interpenetrating Polymer Network. Polym. Bull. 2015, 72, 1663–1681. DOI: 10.1007/s00289-015-1362-z.
  • Haraguchi, K.; Murata, K.; Takehisa, T. Stimuli-Responsive Nanocomposite Gels and Soft Nanocomposites Consisting of Inorganic Clays and Copolymers with Different Chemical Affinities. Macromolecules 2012, 45(1), 385–391. DOI: 10.1021/ma202114z.
  • Haque, M. A.; Kurokawa, T.; Gong, J. P. Super Tough Double Network Hydrogels and Their Application as Biomaterials. Polymer 2012, 53(9), 1805–1822. DOI: 10.1016/j.polymer.2012.03.013.
  • Nonoyama, T.; Gong, J. P. Double-Network Hydrogel and its Potential Biomedical Application: A Review. Proc. Inst. Mech. Eng. Part H 2015, 229(12), 853–863. DOI: 10.1177/0954411915606935.
  • Wu, J.; Zhao, Q.; Sun, J.; Zhou, Q. Preparation of Poly (Ethylene Glycol) Aligned Porous Cryogels Using a Unidirectional Freezing Technique. Soft Matter. 2012, 8(13), 3620–3626. DOI: 10.1039/C2SM07411G.
  • Zhu, J.; Wang, J.; Liu, Q.; Liu, Y.; Wang, L.; He, C.; Wang, H. Anisotropic Tough Poly (2-Hydroxyethyl Methacrylate) Hydrogels Fabricated by Directional Freezing Redox Polymerization. J. Mater Chem. B 2013, 1(7), 978–986. DOI: 10.1039/C2TB00288D.
  • Sano, K.; Ishida, Y.; Aida, T. Synthesis of Anisotropic Hydrogels and Their Applications. Angew. Chem. Int. Ed. 2018, 57(10), 2532–2543. DOI: 10.1002/anie.201708196.
  • Chen, Z.; Liu, J.; Chen, Y.; Zheng, X.; Liu, H.; Li, H. Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. ACS Appl. Mater. Interfaces 2020, 13(1), 1353–1366. DOI: 10.1021/acsami.0c16719.
  • Zeng, W.; Jiang, C.; Wu, D. Heterogeneity Regulation of Bilayer Polysaccharide Hydrogels for Integrating pH-And Humidity-Responsive Actuators and Sensors. ACS Appl. Mater. Interfaces 2023, 15(12), 16097–16108. DOI: 10.1021/acsami.3c01244.
  • He, X.; Zhang, D.; Wu, J.; Wang, Y.; Chen, F.; Fan, P.; Zhong, M.; Xiao, S.; Yang, J. One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations. ACS Appl. Mater. Interfaces 2019, 11(28), 25417–25426. DOI: 10.1021/acsami.9b06691.
  • Halperin, A.; Kröger, M.; Winnik, F. M. Poly (N-Isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 2015, 54(51), 15342–15367. DOI: 10.1002/anie.201506663.
  • Schild, H. G. Poly (N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17(2), 163–249. DOI: 10.1016/0079-6700(92)90023-r.
  • Maeda, Y.; Higuchi, T.; Ikeda, I. Change in Hydration State During the Coil-Globule Transition of Aqueous Solutions of Poly (N-Isopropylacrylamide) as Evidenced by FTIR Spectroscopy. Langmuir 2000, 16(19), 7503–7509. DOI: 10.1021/la0001575.
  • Wang, X. H.; Qiu, X. P.; Wu, C. Comparison of the Coil-To-Globule and the Globule-To-Coil Transitions of a Single Poly (N-Isopropylacrylamide) Homopolymer Chain in Water. Macromolecules 1998, 31(9), 2972–2976. DOI: 10.1021/ma971873p.
  • Kim, Y. S.; Liu, M. J.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. Thermoresponsive Actuation Enabled by Permittivity Switching in an Electrostatically Anisotropic Hydrogel. Nature Mater. 2015, 14(10), 1002–1007. DOI: 10.1038/NMAT4363.
  • Bouillot, P.; Vincent, B. A Comparison of the Swelling Behaviour of Copolymer and Interpenetrating Network Microgel Particles. Colloid Polym. Sci. 2000, 278, 74–79. DOI: 10.1007/s003960050012.
  • Sato, T.; Makino, K.; Tamesue, S.; Ishiura, G.; Itoh, N. Preparation and Permeation Properties of a pH-Responsive Polyacrylic Acid Coated Porous Alumina Membrane. Membranes 2023, 13(1), 82. DOI: 10.3390/membranes13010082.
  • Han, Z.; Wang, P.; Mao, G.; Yin, T.; Zhong, D.; Yiming, B.; Hu, X.; Jia, Z.; Nian, G.; Qu, S., et al. Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12(10), 12010–12017.
  • Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The pH-Responsive Behaviour of Poly (Acrylic Acid) in Aqueous Solution Is Dependent on Molar Mass. Soft Matter. 2016, 12(9), 2542–2549. DOI: 10.1039/c5sm02693h.
  • Thakur, S.; Arotiba, O. A. Synthesis, Swelling and Adsorption Studies of a pH-Responsive Sodium Alginate–Poly(acrylic Acid) Superabsorbent Hydrogel. Polym. Bull. 2018, 75(10), 4587–4606. DOI: 10.1007/s00289-018-2287-0.
  • Shang, J. J.; Theato, P. Smart Composite Hydrogel with pH-, Ionic Strength- and Temperature-Induced Actuation. Soft Matter 2018, 14(41), 8401–8407. DOI: 10.1039/c8sm01728j.
  • Zheng, J.; Xiao, P.; Le, X. X.; Lu, W.; Theato, P.; Ma, C. X.; Du, B. Y.; Zhang, J. W.; Huang, Y. J.; Chen, T. Mimosa Inspired Bilayer Hydrogel Actuator Functioning in Multi-Environments. J. Mater. Chem. C 2018, 6(6), 1320–1327. DOI: 10.1039/c7tc04879c.
  • Haq, M. A.; Su, Y.; Wang, D. Mechanical Properties of PNIPAM Based Hydrogels: A Review. Mater. Sci. Eng. C 2017, 70, 842–855. DOI: 10.1016/j.msec.2016.09.081.
  • Xu, L.; Fu, Y.; Wagner, R. J.; Zou, X.; He, Q.; Li, T.; Pan, W.; Ding, J.; Vernerey, F. J. Thermosensitive P(AAc-Co-NIPAm) Hydrogels Display Enhanced Toughness and Self-Healing via Ion–Ligand Interactions. Macromol. Rapid Commun. 2022, 43(19), 2200320. DOI: 10.1002/marc.202200320.
  • Zhu, Y.; Lin, L.; Zeng, J.; Tang, X.; Liu, Y.; Wu, P.; Xu, C. Seawater-Enhanced Tough Agar/Poly(N -Isopropylacrylamide)/clay Hydrogel for Anti-Adhesion and Oil/Water Separation. Soft Matter. 2020, 16(9), 2199–2207. DOI: 10.1039/C9SM02524C.
  • Xu, L.; Lamont, S. C.; Li, T.; Zhang, Y.; Pan, W.; Gao, C.; Zhu, C.; Chen, S.; Hu, H.; Ding, J., et al. Nonlinear Viscoelasticity and Toughening Mechanisms in Nanoclay-PNIPAAm Double Network Hydrogels. ACS Macro. Lett. 2023, 12(5), 549–554. DOI: 10.1021/acsmacrolett.3c00083.
  • Zhang, W.; Liu, X.; Wang, J.; Tang, J.; Hu, J.; Lu, T.; Suo, Z. Fatigue of Double-Network Hydrogels. Eng. Fract. Mech. 2018, 187, 74–93. DOI: 10.1016/j.engfracmech.2017.10.018.
  • Zhang, Z.; Lin, T.; Li, S.; Chen, X.; Que, X.; Sheng, L.; Hu, Y.; Peng, J.; Ma, H.; Li, J.; et al. Polyacrylamide/copper‐Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‐Sensitivity. Macromol. Biosci. 2022, 22(2), 2100361. DOI: 10.1002/mabi.202100361.
  • Kim, Y. W.; Kim, D. Y.; Sun, J. Y. Fracture Toughness and Blocking Force of Temperature-Sensitive PolyNipaam and Alginate Hybrid Gels. Gels 2022, 8(5), 324. DOI: 10.3390/gels8050324.
  • Li, Y.; Liu, L.; Xu, H.; Cheng, Z.; Yan, J.; Xie, X.-M. Biomimetic Gradient Hydrogel Actuators with Ultrafast Thermo-Responsiveness and High Strength. ACS Appl. Mater. Interfaces 2022, 14(28), 32541–32550. DOI: 10.1021/acsami.2c07631.
  • Yuan, H.; Kurashina, K.; de Bruijn J D; de Bruijn, J. D.; Li, Y.; de Groot, K.; Zhang, X. A Preliminary Study on Osteoinduction of Two Kinds of Calcium Phosphate Ceramics. Biomaterials 1999, 20(19), 1799–1806. DOI: 10.1016/S0142-9612(99)00075-7.
  • Zhang, G.-Q.; Zha, L.-S.; Liang, B.-R. Preparation of Fast Temperature Responsive Porous Poly(N-Isopropylacrylamide) Hydrogels using Sodium Alginate as Pore-making Agent in Sodium Chloride Solutions. Acta Polym. Sin. 2009, 9(7), 633–637. DOI: 10.3724/SP.J.1105.2009.00633.
  • Chang, M.; Liu, X.; Meng, L.; Wang, X., Ren, J. Xylan-Based Hydrogels As a Potential Carrier for Drug Delivery: Effect of Pore-Forming Agents. Pharmaceutics 2018, 10(4), 261. DOI: 10.3390/pharmaceutics10040261.
  • Kirsebom, H.; Topgaard, D.; Galaev, I. Y., Mattiasson, B. Modulating the Porosity of Cryogels by Influencing the Nonfrozen Liquid Phase Through the Addition of Inert Solutes. Langmuir 2010, 26(20), 16129–16133. DOI: 10.1021/la102917c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.