44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tailoring of ionic imprinted polymer-based polyeugenol as a selective adsorbent of Fe(III) ions

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 19 Jan 2024, Accepted 22 May 2024, Published online: 03 Jun 2024

References

  • Ait-Touchente, Z.; Sakhraoui, H. E. E. Y.; Fourati, N.; Zerrouki, C.; Maouche, N.; Yaakoubi, N.; Touzani, R.; Chehimi, M. M. High Performance Zinc Oxide Nanorod-Doped Ion Imprinted Polypyrrole for the Selective Electrosensing of Mercury II Ions. Appl. Sci. 2020, 10, 7010. DOI: 10.3390/app10197010.
  • Behbahani, E. S.; Dashtian, K.; Ghaedi, M. Fe3O4-FeMos4: Promise Magnetite LDH-Based Adsorbent for Simultaneous Removal of Pb (II), Cd (II), and Cu (II) Heavy Metal Ions. J. Hazard. Mater. 2021, 410, 124560. DOI: 10.1016/j.jhazmat.2020.124560.
  • Kumar, P. S.; Korving, L.; Keesman, K. J.; van Loosdrecht, M. C.; Witkamp, G.-J. Effect of Pore Size Distribution and Particle Size of Porous Metal Oxides on Phosphate Adsorption Capacity and Kinetics. Chem. Eng. J. 2019, 358, 160–169. DOI: 10.1016/j.cej.2018.09.202.
  • Luo, J.; Yu, D.; Hristovski, K. D.; Fu, K.; Shen, Y.; Westerhoff, P.; Crittenden, J. C. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environ. Sci. Technol. 2021, 55(8), 4287–4304. DOI: 10.1021/acs.est.0c07936.
  • Ait-Touchente, Z.; Falah, S.; Scavetta, E.; Chehimi, M. M.; Touzani, R.; Tonelli, D.; Taleb, A. Different Electrochemical Sensor Designs Based on Diazonium Salts and Gold Nanoparticles for Pico Molar Detection of Metals. Molecules 2020, 25, 3903. DOI: 10.3390/molecules25173903.
  • Han, Q.; Setchi, R.; Evans, S. L. Synthesis and Characterisation of Advanced Ball-Milled Al-Al2O3 Nanocomposites for Selective Laser Melting. Powder Technol. 2016, 297, 183–192. DOI: 10.1016/j.powtec.2016.04.015.
  • Bugatti, V.; Bernardo, P.; Clarizia, G.; Viscusi, G.; Vertuccio, L.; Gorrasi, G. Ball Milling to Produce Composites Based of Natural Clinoptilolite As a Carrier of Salicylate in Bio-Based PA11. Polymers 2019, 11(4), 634. DOI: 10.3390/polym11040634.
  • Bishoyi, S. S.; Behera, S. K. Synthesis and Structural Characterization of Nanocrystalline Silicon by High Energy Mechanical Milling Using Al2O3 Media. Adv. Powder Technol. 2022, 33, 103639. DOI: 10.1016/j.apt.2022.103639.
  • Pardoyo, P.; Astuti, Y.; Herinnayah, G.; Suhartana, S.; Wibawa, P. The Influence of High Energy Milling to the Adsorption of Cd (II) and Zn (II) Ions on Activated Zeolite. J. Phys. 2020, 1524, 012080. DOI: 10.1088/1742-6596/1524/1/012080.
  • Shah, N.; Khan, Z. U.; Hussain, M.; Rehan, T.; Khan, A.; Zaman, K.; Tariq, S.; Kamal, T.; Asiri, A. M. Molecularly Imprinted Polymer Particles and Beads: A Survey of Modern Synthetic Techniques. Curr. Nanosci. 2021, 17(3), 380–392. DOI: 10.2174/1573413716666201105155421.
  • Harimu, L.; Matsjeh, S.; Siswanta, D.; Santosa, S. J. Synthesis of Polyeugenyl Oxyacetic Acid As a Carrier to Separate Heavy Metal Ion Fe (III), Cr (III), Cu (II), Ni (II), Co (II), and Pb (II) That Using Solvent Extraction Method. Indones. J. Chem. 2009, 9, 261–266. DOI: 10.22146/ijc.21540.
  • Chen, L.; Dai, J.; Hu, B.; Wang, J.; Wu, Y.; Dai, J.; Meng, M.; Li, C.; Yan, Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. Sep. Purif. Rev. 2020, 49, 265–293. DOI: 10.1080/15422119.2019.1596134.
  • Djunaidi, M. C. Synthesis, Characterization aAnd Selectivity of Molecularly Imprinted Polymer (MIP) Glucose Using Polyeugenol as a Functional Polymer. Rasayan J. Chem. 2019, 12(02), 809–821. DOI: 10.31788/RJC.2019.1225120.
  • Zhu, F.; Lu, H.; Lu, Y. Effective Solid Phase Extraction for the Enrichment of P-Nitrophenol in Water Using Microwave-Assisted Synthesized Fly Ash@ P-Nitrophenol Surface Molecular Imprinted Polymer. J. Mater. Sci. 2023, 58, 4399–4415. DOI: 10.1007/s10853-023-08302-z.
  • Zhu, F.; Li, L.; Li, N.; Liu, W.; Liu, X.; He, S. Selective Solid Phase Extraction and Preconcentration of Cd(ii) in the Solution Using Microwave-Assisted Inverse Emulsion-Suspension Cd(ii) Ion Imprinted Polymer. Microchem. J. 2021, 164, 106060. DOI: 10.1016/j.microc.2021.106060.
  • Zhu, F.; Lu, Y.; Ren, T.; He, S.; Gao, Y. Synthesis of Ureido-Functionalized Cr(vi) Imprinted Polymer: Adsorption Kinetics and Thermodynamics Studies. Desalin. Water. Treat. 2017, 100, 126–134. DOI: 10.5004/dwt.2017.21683.
  • Rahim, E. A.; Istiqomah, N.; Almilda, G.; Ridhay, A.; Sumarni, N. K.; Indriani, I. Antibacterial and Antioxidant Activities of Polyeugenol with High Molecular Weight. Indones. J. Chem. 2020, 20, 722–728. DOI: 10.22146/ijc.44659.
  • Arianie, L.; Supriatna, M. I.; Kazal, N.; Widodo, N.; Warsito, W.; Iftitah, E. D. Synthesis and Characterization of Isothiocyanate Poly (Methyl Eugenol) and Thiosemicarbazide Poly (Methyl Eugenol). Mater. Sci. Forum 2022, 1074, 23–32. DOI: 10.4028/p-oo6x3k.
  • Vieira, D. M.; Pereira, C.; Calhelha, R. C.; Barros, L.; Petrovic, J.; Sokovic, M.; Barreiro, M. F.; Ferreira, I. C.; Castro, M. C. R.; Rodrigues, P. V. Evaluation of Plant Extracts As an Efficient Source of Additives for Active Food Packaging. Food Front. 2022, 3, 480–488. DOI: 10.1002/fft2.141.
  • Alrahlah, A.; Al-Odayni, A.-B.; Saeed, W. S.; Abduh, N. A.; Khan, R.; Alshabib, A.; Almajhdi, F. F. N.; Alodeni, R. M.; De Vera, M. A. T. Influence of Eugenol and Its Novel Methacrylated Derivative on the Polymerization Degree of Resin-Based Composites. Polymers 2023, 1124, 15. DOI: 10.3390/polym15051124.
  • Reis, R. C. F. M.; Reis, A. C. C.; Torchelsen, F. K. V. S.; de Lana, M.; Junior, P. A. S.; Brandão, G. C.; Braga, S. F. P.; de Souza, T. B. Synthesis, Trypanocidal and Cytotoxic Activities of α,β-Unsaturated Ketones Derived from Eugenol and Analogues. Med. Chem. Res. 2022, 31, 2152–2159. DOI: 10.1007/s00044-022-02976-x.
  • Prasetya, N. B. A.; Ajizan, A. I.; Widodo, D. S.; Ngadiwiyana, N.; Gunawan, G. A Polyeugenol/Graphene Composite with Excellent Anti-Corrosion Coating Properties. Mater. Adv. 2023, 4, 248–255. DOI: 10.1039/D2MA00875K.
  • Djunaidi, M. C.; Maharani, N. D.; Khasanah, M. Eugenol-Based Molecular Imprinted Membrane Synthesis As a Glucose Sensor in Honey. Mater. Today Proc. 2023, 80, 1195–1204. DOI: 10.1016/j.matpr.2022.12.198.
  • Djunaidi, M. C. Selective Transport of Fe (III) Using Polyeugenol As Functional Polymer with Ionic Imprinted Polymer Membrane Methode. Asian J. Chem. 2015, 27, 4553–4562. DOI: 10.14233/ajchem.2015.19228#sthash.LfxtS8sz.dpuf.
  • Foschi, M.; Tozzi, L.; Di Donato, F.; Biancolillo, A.; D’Archivio, A. A. A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas. Molecules 2022, 28, 33. DOI: 10.3390/molecules28010033.
  • Granados-Pichardo, A.; Granados-Correa, F.; Sanchez-Mendieta, V.; Hernandez-Mendoza, H. New CaO-Based Adsorbents Prepared by Solution Combustion and High-Energy Ball-Milling Processes for CO2 Adsorption: Textural and Structural Influences. Arab J. Chem. 2020, 13, 171–183. DOI: 10.1016/j.arabjc.2017.03.005.
  • Otero-Romaní, J.; Moreda-Pineiro, A.; Bermejo-Barrera, P.; Martin-Esteban, A. Synthesis, Characterization and Evaluation of Ionic-Imprinted Polymers for Solid-Phase Extraction of Nickel from Seawater. Analytica Chimica Acta 2008, 630, 1–9. DOI: 10.1016/j.aca.2008.09.049.
  • Djunaidi, M. C. Synthesis of Fe (III) Ionic Imprinted Imprinted Polyeugenol Using Polyethylene Glycol Diglycidilether As Cross-Linking Agent for Sorption of Fe (III). Indones. J. Chem. 2015, 15, 305–314. DOI: 10.22146/ijc.21200.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/C6CS00061D.
  • Rahman, S. K. A.; Yusof, N. A.; Abdullah, A. H.; Mohammad, F.; Idris, A.; Al-Lohedan, H. A.; Kumar, A. Evaluation of Porogen Factors for the Preparation of Ion Imprinted Polymer Monoliths Used in Mercury Removal. PLOS ONE 2018, 13, e0195546. DOI: 10.1371/journal.pone.0195546.
  • Mitreva, M.; Dakova, I.; Karadjova, I. Iron(ii) Ion Imprinted Polymer for Fe (II)/Fe (III) Speciation in Wine. Microchem. J. 2017, 132, 238–244. DOI: 10.1016/j.microc.2017.01.023.
  • Zhou, Z.; Kong, D.; Zhu, H.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhang, W.; Ren, Z. Preparation and Adsorption Characteristics of an Ion-Imprinted Polymer for Fast Removal of Ni(ii) Ions from Aqueous Solution. J. Hazard. Mater. 2018, 341, 355–364. DOI: 10.1016/j.jhazmat.2017.06.010.
  • Li, N.; Yang, H. Construction of Natural Polymeric Imprinted Materials and their Applications in Water Treatment: A Review. J. Hazard. Mater. 2021, 403, 123643. DOI: 10.1016/j.jhazmat.2020.123643.
  • Obali, A. Y.; Ucan, H. I. Novel Dipodal Schiff Base Compounds: Synthesis, Characterization and Spectroscopic Studies. J. Mol. Struct. 2015, 1081, 74–78. DOI: 10.1016/j.molstruc.2014.09.077.
  • Bashir, A.; Manzoor, T.; Malik, L. A.; Qureashi, A.; Pandith, A. H. Enhanced and Selective Adsorption of Zn (II), Pb (II), Cd (II), and Hg (II) Ions by a Dumbbell-And Flower-Shaped Potato Starch Phosphate Polymer: A Combined Experimental and DFT Calculation Study. ACS Omega 2020, 5, 4853–4867. DOI: 10.1021/acsomega.9b03607.
  • Hamisu, A. M.; Ariffin, A.; Wibowo, A. C. Cation Exchange in Metal-Organic Frameworks (MOFs): The Hard-Soft Acid-Base (HSAB) Principle Appraisal. Inorganica Chim. Acta 2020, 511, 119801. DOI: 10.1016/j.ica.2020.119801.
  • Sharma, G.; Kandasubramanian, B. Molecularly Imprinted Polymers for Selective Recognition and Extraction of Heavy Metal Ions and Toxic Dyes. J. Chem. Eng, Data. 2020, 65, 396–418. DOI: 10.1021/acs.jced.9b00953.
  • Calvo, B.; Canoira, L.; Morante, F.; Martínez-Bedia, J. M.; Vinagre, C.; García-González, J.-E.; Elsen, J.; Alcantara, R. Continuous Elimination of Pb2+, Cu2+, Zn2+, H+ and NH4+ from Acidic Waters by Ionic Exchange on Natural Zeolites. J. Hazard. Mater. 2009, 166, 619–627. DOI: 10.1016/j.jhazmat.2008.11.087.
  • Torras, J.; Aleman, C. Determination of New Cu+, Cu2+, and Zn2+ Lennard-Jones Ion Parameters in Acetonitrile. J. Phys. Chem B 2013, 117, 10513–10522. DOI: 10.1021/jp402545g.
  • Djunaidi, M.; Aini, A.; Widodo, D.; Lusiana, R.; Suseno, A. Fe (III) Adsorption Using Fe (III) Ionic Imprinted Polymer from Polyeugenoxy Acetate Crosslinked with Ethylene Glycol Dimethacrylate (EGDMA). J. Phys. 2021, 1943, 012167. DOI: 10.1088/1742-6596/1943/1/012167.
  • Özkara, S.; Andaç, M.; Karakoç, V.; Say, R.; Denizli, A. Ion‐Imprinted PHEMA Based Monolith for the Removal of Fe3+ Ions from Aqueous Solutions. J. Appl. Polym. Sci. 2011, 120, 1829–1836. DOI: 10.1002/app.33400.
  • Djunaidi, M.; Fitriana, W.; Lusiana, R.; Suseno, A. Adsorption of Fe (III) Metal Ion by Ionic Imprinted Polymer (IIP) Method with Poly (Ethylene Glycol) Diglycidyl Ether (PEGDE) as a Crosslinker. J. Phys. 2021, 1943, 012168. DOI: 10.1088/1742-6596/1943/1/012168.
  • Djunaidi, M. C.; Haris, A.; Rosdiana, K. The Impact of Template Types on Polyeugenol to the Adsorption Selectivity of Ionic Imprinted Polymer (IIP) Fe Metal ion. IOP Conf. Series 2018, 349, 012034. DOI: 10.1088/1757-899X/349/1/012034.
  • Pareek, S.; Jain, D.; Hussain, S.; Biswas, A.; Shrivastava, R.; Parida, S. K.; Kisan, H. K.; Lgaz, H.; Chung, I.-M.; Behera, D. A New Insight into Corrosion Inhibition Mechanism of Copper in Aerated 3.5 Wt.% NaCl Solution by Eco-Friendly Imidazopyrimidine Dye: Experimental and Theoretical Approach. 2019, 358, 725–742. DOI: 10.1016/j.cej.2018.08.079.
  • Bernal, V.; Giraldo, L.; Moreno-Piraján, J. C. Physicochemical Properties of Activated Carbon: Their Effect on the Adsorption of Pharmaceutical Compounds and Adsorbate–Adsorbent Interactions. 2018, 4, 62. DOI: 10.3390/c4040062.
  • Khalaf, M. M.; Tantawy, A. H.; Soliman, K. A.; Abd El-Lateef, H. M. Cationic Gemini-Surfactants Based on Waste Cooking Oil as New ‘Green’ Inhibitors for N80-Steel Corrosion in Sulphuric Acid: A Combined Empirical and Theoretical Approaches. 2020, 1203, 127442. DOI: 10.1016/j.molstruc.2019.127442.
  • Mourya, P.; Singh, P.; Tewari, A. K.; Rastogi, R. B.; Singh, M. M. Relationship Between Structure and Inhibition Behaviour of Quinolinium Salts for Mild Steel Corrosion: Experimental and Theoretical Approach. 2015, 95, 71–87. DOI: 10.1016/j.corsci.2015.02.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.