301
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Exact shell solutions for conical springs

Pages 317-339 | Received 11 Feb 2015, Accepted 24 Jun 2015, Published online: 12 Apr 2016

References

  • Adali, S. (1981). Optimization of a thin-walled, anisotropic curved bar for maximum torsional stiffness. Journal of Structural Mechanics 9(4):389–413. doi:10.1080/\allowbreak03601\allowbreak21810\allowbreak89\allowbreak07393.
  • Almen, J. O., Laszlo, A. (1936). The uniform section disc spring. Trans ASME 58(4):305–314.
  • ANSYS. (2015). ANSYS, Inc. Southpointe, 2600 ANSYS Drive, Canonsburg, PA 15317c. http://www.ansys.com/.
  • Atluri, S., Pian, T. H. H. (1972). Theoretical formulation of finite-element methods in linear-elastic analysis of general shells. Journal of Structural Mechanics 1(1):1–41. doi:10.1080/03601217208905331.
  • Banichuk, N. V. (1993). Shape design sensitivity analysis for optimization problems with local and global functionals. Mechanics of Structures and Machines 21(3):375–397. doi:10.1080/08905459308905194.
  • Banichuk, N. V. (1996). Optimization of anisotropic properties for continuum bodies and structural elements using spectral methods of tensor analysis. Mechanics of Structures and Machines 24(1):71–87. doi:10.1080/\allowbreak08905\allowbreak45960\allowbreak89\allowbreak05256.
  • Blom, A. W., Tatting, B. F., Hol, J. M. A. M., Gürdala, Z. (2009). Fiber path definitions for elastically tailored conical shells. Composites Part B: Engineering 40(1):77–84. doi:10.1016/j.compositesb.2008.03.011.
  • Catapano, A., Desmorat, B., Vannucci, P. (2015). Stiffness and strength optimization of the anisotropy distribution for laminated structures. Journal of Optimization Theory and Applications, http://dx.doi.org/10.1007/s10957-014-0693-5, published online Dec. 2014.
  • Curti, G., Orlando, M. (1979). Ein neues Berechnungsverfahren für Tellerfedern. Draht 30(1):17–22.
  • Curti, G., Orlando, M., Podda, G. (1980). Vereinfachtes Verfahren zur Berechnung von Tellerfedern. Draht 31(11):789–792.
  • Curti, G., Orlando, M. (1981). Geschlitzte Tellerfedern. Draht 32(11):610–615.
  • Curti, G., Orlando, M., Podda, G. (1980). Vereinfachtes Verfahren zur Berechnung von Tellerfedern Draht. 31(11): 789–792.
  • DIN. (2006). DIN 2092:2006-03, Tellerfedern – Berechnung, Beuth, Berlin.
  • Dumir, P. C. (1986). Nonlinear axisymmetric response of orthotropic thin truncated conical and spherical caps. Acta Mechanica 60:121–132. doi:10.1007/bf01302946.
  • Fawazi, N., Lee, J.-Y., Oh, J.-E. (2011). A load–displacement prediction for a bended slotted disc using the energy method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226:2126–2137. doi:10.1177/0954406211430046.
  • Ferrari, G. (2013). A new calculation method for belleville disc springs with contact flats and reduced thickness. International Journal of Manufacturing, Materials, and Mechanical Engineering 3(2):63–73. doi:10.4018/ijmmme.2013040105.
  • Gross, S. (1960). Berechnung und Gestaltung von Metallfedern. Berlin: Springer-Verlag.
  • Hübner, W. (1982). Deformationen und Spannungen bei Tellerfedern. Konstruktion 34:387–392.
  • Hübner, W. (1984). Large deformations of elastic conical shells. In Axelrad, E. L. Emmerling, F. A. eds., Flexible Shells. Berlin: Springer Verlag, 257–270.
  • Hübner, W., Emmerling, F. A. (1982). Axialsymmetrische gro <szlig >e Deformationen einer elastischen Kegelschale. ZAMM 62:408–411.
  • La Rosa, G., Messina, M., Risitano, A. (1998). Stiffness of variable thickness belleville springs. Journal of Mechanical Design 123(2):294–299. doi:10.1115/\allowbreak1.13\allowbreak57162.
  • Lellep, J., Polikarpus, J. (2014). Optimization of anisotropic circular plates. Recent Advances in Mechanical Engineering. Proceedings of the 5th European Conference of Mechanical Engineering (ECME’ 14), Florence, Italy, November 22–24, pp. 40–45.
  • Libai, A., Simmonds, J. G. (1988). The Nonlinear Theory of Elastic Shells, One Spatial Dimension. London: Academic Press.
  • Marsden, J. Hughes. (1994). Mathematical Foundations of Elasticity. New York: Dover.
  • Meissner, M., Schorcht, H.-J. (2013). Metallfedern: Grundlagen, Werkstoffe, Berechnung und Gestaltung. Berlin: Springer-Verlag.
  • MUBEA. (2015). Mubea disc springs, 6800 Industrial Road Florence, KY 41042, USA. http://www.mubea-discsprings.com/.
  • Niepage, P. (1983). Vergleich verschiedener Verfahren zur Berechnung von Tellerfedern – Teil I. Draht 34:105–08. Teil II. Draht 34:251–255.
  • Niepage, P., Schiffner, K., Gräb, B. (1987). Theoretische und experimentelle Untersuchungen an geschlitzten Tellerfedern. Düsseldorf: VDI-Verlag.
  • Pedersen, N. L., Pedersen, P. (2011). Stiffness and design for strength of trapezoidal Belleville springs. The Journal of Strain Analysis for Engineering Design 46:825–836. doi:10.1177/0309324711414337.
  • Reddy, J. N. (1976). On complementary variational principles for the linear theory of plates. Journal of Structural Mechanics 4(4):417–436. doi:10.1080/03601217608907299.
  • Rovati, M., Taliercio, A. (2003). Stationarity of the strain energy density for some classes of anisotropic solids. International Journal of Solids and Structures 40:6043–6075. doi:10.1016/s0020-7683(03)00371-8.
  • Saini, P. K., Kumar, P., Tandon, P. (2007). Design and analysis of radially tapered disc springs with parabolically varying thickness. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221(2):151–158. doi:10.1243/0954406JMES114.
  • SAE. (1996). Society of Automotive Engineers. Spring Design Manual. Warrendale, PA: Part 5, SAE, HS-158.
  • Schremmer, G. (1973). The slotted conical disc spring. Journal of Engineering for Industry 95(3):765–770. doi:10.1115/1.3438223.
  • Shen, W., Fang, W. (2007). Design of a friction clutch using dual Belleville structures. Journal of Mechanical Design 129(9):986–990. doi:10.1115/1.2748454.
  • Sofiyev, A. H. (2003). The buckling of an orthotropic composite truncated conical shell with continuously varying thickness subject to a time dependent external pressure. Composites Part B: Engineering 34(3):227–233. doi:10.1016/s1359-8368(02)00105-1.
  • Sofiyev, A. H., Kuruoglu, N. (2013). Buckling analysis of nonhomogeneous orthotropic thin-walled truncated conical shells in large deformation. Thin-walled Structures 62(1):131–141. doi:10.1016/j.tws.2012.08.002.
  • Tavares, S. A. (1996). Thin conical shells with constant thickness and under axisymmetric load. Computers & Structures 60(6):895–921. doi:10.1016/0045-7949(95)00450-5.
  • Timoshenko, S., Woinowsky-Krieger, S. (1957). Theory of plate and shell. 2nd ed. New York: McGraw Hill.
  • Ventsel, E., Krauthammer, T. (2001). Thin Plates and Shells, Theory, Analysis, and Applications. Basel, AG: Marcel Dekker.
  • Vinson, J. R. (1993). The Behavior of Shells Composed of Isotropic and Composite Materials. Netherlands: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.