380
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration/buckling analyses of noncylindrical initially compressed helical composite springs

&
Pages 340-353 | Received 21 Dec 2014, Accepted 24 Jun 2015, Published online: 22 Mar 2016

References

  • Aguiar, R. A. A., Savi, M. A., Pacheco, P. M. C. L. (2010). Experimental and numerical investigations of shape memory alloy helical springs. Smart Materials & Structures 19(2):025008. doi:10.1088/0964-1726/19/2/025008.
  • Aktas, Z. (1972). Numerical Solutions of Two-Point Boundary Value Problems. Ankara, Turkey: Middle East Technical University.
  • Ansys. (2004). Theory Manual Version 9.0. Canonsburg, PA: ANSYS Inc.
  • Becker, L. E., Chassie, G. G., Cleghorn, W. L. (2002). On the natural frequencies of helical compression springs. International Journal of Mechanical Sciences 44(4):825–841. doi:10.1016/s0020-7403(01)00096-0.
  • Becker, L. E., Cleghorn, W. L. (1994). The buckling behavior of rectangular-bar helical compression springs. Journal of Applied Mechanics 61(2):491–493. doi:10.1115/1.2901479.
  • Busool, W., Eisenberger, M. (2002). Free vibration of helicoidal beams of arbitrary shape and variable cross section. Journal of Vibration and Acoustics 124(3):397–409. doi:10.1115/1.1468870.
  • Chassie, G. G., Becker, L. E., Cleghorn, W. L. (1997). On the buckling of helical springs under combined compression and torsion. International Journal of Mechanical Sciences 39(6):697–704. doi:10.1016/s0020-7403(96)00070-7.
  • Cowper, G. R. (1966). The shear coefficient in Timoshenko's beam theory. Journal of Applied Mechanics 33(2):335–340. doi:10.1115/1.3625046.
  • Cunedioğlu, Y. (2011). Analyses of laminated cantilever composite beams by model order reduction techniques. Mechanics Based Design of Structures and Machines 39(1):22–45. doi:10.1080/15397734.2011.524574.
  • Epstein, I. (1947). The motion of a conical coil spring. Journal of Applied Physics 18(4):368–374. doi:10.1063/1.1697660.
  • Girgin, K. (2006). Free vibration analysis of non-cylindrical helices with, variable cross-section by using mixed FEM. Journal of Sound and Vibration 297(3–5):931–945. doi:10.1016/j.jsv.2006.05.001.
  • Ghannadias, A., Mofid, M. (2014). Dynamic green function for response of Timoshenko beam with arbitrary boundary conditions. Mechanics Based Design of Structures and Machines 42(1):97–110. doi:10.1080/15397734.2013.836063.
  • Haktanir, V. (1994). A new method for the element stiffness matrix of arbitrary planar bars. Computers & Structures 52(4):679–691. doi:10.1016/0045-7949(94)90349-2.
  • Haktanir, V. (1995). The complementary functions method for the element stiffness matrix of arbitrary spatial bars of helicoidal axes. International Journal for Numerical Methods in Engineering 38(6):1031–1056. doi:10.1002/nme.1620380611.
  • Haktanir, V., Kıral, E. (1991). Direct application of complementary functions method to axisymmetrical shells and cylindrical vaults (barrels). Journal of Isparta Engineering Faculty of Akdeniz University 6:220–239.
  • Haringx, J. A. (1949). On highly compressible helical springs and rubber rods, and their application for vibration-free mountings. Philips Research Reports 4:49–80.
  • Ibrikci, T., Sacma, S., Yildirim, V., Koca, T. (2010). Application of artificial neural networks in the prediction of critical buckling loads of helical compression springs. Strojniski Vestnik-Journal of Mechanical Engineering 56(6):409–417.
  • Jun, L., Guangwei, R., Jin, P., Xiaobin, L., Weiguo, W. (2014). Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mechanics Based Design of Structures and Machines 42(1): 111–129. doi:10.1080/15397734.2013.846224.
  • Jun, L., Hongxing, H. (2009). Variationally consistent higher-order analysis of harmonic vibration of laminated beams. Mechanics Based Design of Structures and Machines 37:299–326. doi:10.1080/15397730902932608.
  • Kacar, I., Yildirim, V. (2011). Natural frequencies of composite cylindrical helical springs under compression. Vibration Problems ICOVP 2011 139:119–124. doi:10.1007/978-94-007-2069-5_16.
  • Kim, N.-I., Jeon, C.-K. (2013). Coupled static and dynamic analyses of shear deformable composite beams with channel-sections. Mechanics Based Design of Structures and Machines 41(4):489–511. doi:10.1080/15397734.2013.797332.
  • Krużelecki, J. (1997). Stability and optimization of elastically clamped helical springs under tension. Engineering Optimization 29(1–4):377–399. doi:10.1080/03052159708941003.
  • Mirzaeifar, R., DesRoches, R., Yavari, A. (2011). A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. International Journal of Solids and Structures 48(3–4):611–624. doi:10.1016/j.ijsolstr.2010.10.026.
  • Nagaya, K., Takeda, S., Nakata, Y. (1986). Free vibration of coil springs of arbitrary shape. International Journal for Numerical Methods in Engineering 23(6):1081–1099. doi:10.1002/nme.1620230607.
  • Paredes, M., Rodriguez, E. (2009). Optimal design of conical springs. Engineering with Computers 25:147–154. doi:10.1007/s00366-008-0112-3.
  • Patil, R. V., Reddy, P. R., Laxminarayana, P. (2014). Comparison of cylindrical and conical helical springs for their buckling load and deflection. International Journal of Advanced Science and Technology 73:33–50. doi:10.14257/ijast.2014.73.03.
  • Patil, R. V., Reddy, P. R., Laxminarayana, P. (2015). Development of buckling equation for conical spring and its experimental verification. American Journal of Engineering and Technology Research 15(1):67–81.
  • Pearson, D. (1982). The transfer-matrix method for the vibration of compressed helical springs. Journal of Mechanical Engineering Science 24(4):163–171. doi:10.1243/jmes_jour_1982_024_033_02.
  • Pestel, E., Leckie, F. A. (1963). Matrix Methods in Elastomechanics. New York: McGraw-Hill.
  • Roberts, S. M., Shipman, J. S. (1979). Fundamental matrix and two-point boundary-value problems. Journal of Optimization Theory and Applications 28(1):77–78.
  • Sohn, J.-H., Lee, S.-K., Kim, S.-O., Yoo, W.-S. (2008). Comparison of spring models for dynamic analysis of a high voltage circuit breaker with a spring operating mechanism. Mechanics Based Design of Structures and Machines 36(2):107–128. doi:10.1080/15397730701854573.
  • Tabarrok, B., Xiong, Y. (1992). A spatially curved and twisted rod element for buckling analysis. International Journal of Solids and Structures 29(23):3011–3023. doi:10.1016/0020-7683(92)90155-m.
  • Timoshenko, S. P. (1921). LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine Series 6 41(245):744–746. doi:10.1080/14786442108636264.
  • Timoshenko, S. P. (1991). Mechanics of Materials. London: Chapman & Hall.
  • Tobushi, H., Tanaka, K. (1991). Deformation of a shape memory alloy helical spring: Analysis based on stress-strain-temperature relation. JSME International Journal. Series I, Solid Mechanics, Strength of Materials 34(1):83–89.
  • Wahl, A. M. (1963). Mechanical Springs. 2nd ed. New York: McGraw-Hill.
  • Wolansky, E. B. (1996). Conical spring buckling deflection. Springs 35:63–68.
  • Xiong, Y., Tabarrok, B. (1992). A finite-element model for the vibration of spatial rods under various applied loads. International Journal of Mechanical Sciences 34(1):41–51. doi:10.1016/0020-7403(92)90052-i.
  • Yildirim, V. (1997). Free vibration analysis of non-cylindrical coil springs by combined use of the transfer matrix and the complementary functions methods. Communications in Numerical Methods in Engineering 13(6):487–494. doi:10.1002/(sici)1099-0887(199706)13:6<487::aid-cnm77>3.0.co;2-x.
  • Yildirim, V. (1999). Governing equations of initially twisted elastic space rods made of laminated composite materials. International Journal of Engineering Science 37(8):1007–1035. doi:10.1016/s0020-7225(98)00106-2.
  • Yildirim, V. (2001a). Free vibration characteristics of composite barrel and hyperboloidal coil springs. Mechanics of Composite Materials and Structures 8(3):205–217. doi:10.1080/107594101750370488.
  • Yildirim, V. (2001b). Free vibration of uniaxial composite cylindrical helical springs with circular section. Journal of Sound and Vibration 239(2):321–333. doi:10.1006/jsvi.2000.3168.
  • Yildirim, V. (2002). Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs. Journal of Sound and Vibration 252(3):479–491. doi:10.1006/jsvi.2001.4005.
  • Yildirim, V. (2004). A parametric study on the natural frequencies of unidirectional composite conical springs. Communications in Numerical Methods in Engineering 20(3):207–227. doi:10.1002/cnm.661.
  • Yildirim, V. (2009a). Numerical buckling analysis of cylindrical helical coil springs in a dynamic manner. International Journal of Engineering and Applied Sciences 1(1):20–32.
  • Yildirim, V. (2009b). Buckling and Free Vibration Problems of Helical Compression Springs with Pre-Load: A Software Program and Design Charts. Ankara: Tubitak (The Scientific and Technological Research Council of Turkey).
  • Yildirim, V. (2012). On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion. Meccanica 47(4):1015–1033. doi:10.1007/s11012-011-9492-3.
  • Yildirim, V., Kacar, I. (2011). Free Vibration Analysis of Pre-Loaded Cylindrical Helical Springs Made of Isotropic Materials. 10th International Conference on Vibrational Problems (ICOVP), Prague, Czech Republic, Sep. 5–8.
  • Yu, A.-M., Hao, Y. (2013a). Warping effect in free vibration analysis of unidirectional composite non-cylindrical helical springs. Meccanica 48(10):2453–2465.
  • Yu, A. M., Hao, Y. (2013b). Effect of warping on natural frequencies of symmetrical cross-ply laminated composite non-cylindrical helical springs. International Journal of Mechanical Sciences 74:65–72. doi:10.1016/j.ijmecsci.2013.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.