315
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium

, , , , , , & show all
Pages 384-404 | Received 26 May 2015, Accepted 13 Aug 2015, Published online: 26 May 2016

References

  • Ambartsumyan, S. A. (1964). Theory of Anisotropic Shells. NASA TT F–118. Washington, DC: NASA.
  • Bagherizadeh, E., Kiani, Y., Eslami, M. R. (2011). Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Composite Structures 93:3063–3071. doi:10.1016/j.compstruct.2011.04.022
  • Bajenov, V. A. (1975). The Bending of the Cylindrical Shells in Elastic Medium. Kiev: Visha Shkola. (in Russian)
  • Fazzolari, F. A., Carrera, E. (2014). Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core. Journal of Sound and Vibration 333:1485–1508. doi:10.1016/j.jsv.2013.10.030
  • Ferreira, A. J. M., Carrera, E., Cinefra, M., Viola, E., Tornabene, F., Fantuzzi, N., Zenkour, A. M. (2014). Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation. Composites Part B: Engineering 58:544–552. doi:10.1016/j.compositesb.2013.10.088
  • Goncalves, P. B., Silva, F. M. A., Prado, Z. J. G. N. (2006). Transient stability of empty and fluid-filled cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering 28:331–338. doi:10.1590/s1678-58782006000300011
  • Gunawan, H., Sato, M., Kanie, S., Mikami, T. (2004). Static and free vibration analysis of cylindrical shells on elastic foundation. Journal of Structural Engineering 50A:25–34.
  • Hu, Y. D., Zhang, X. G. (2011). Parametric vibrations and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines 39:367–377. doi:10.1080/15397734.2011.557970
  • Kamarian, S., Sadighi, M., Shakeri, M., Yas, M. H. (2014). Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation. Journal of Sandwich Structures and Materials 16:511–533. doi:10.1177/1099636214541573
  • Kiani, Y., Bagherizadeh, E., Eslami, M. R. (2011). Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation. Journal of Mechanical Engineering Science 226:32–41. doi:10.1177/0954406211413657
  • Kieback, B., Neubrand, A., Riedel, H. (2003). Processing techniques for functionally graded materials. Materials Science and Engineering: A 362:81–106. doi:10.1016/s0921-5093(3)00578-1
  • Kim, Y. W. (2015). Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge. Composites Part B: Engineering 70:263–276. doi:10.1016/j.compositesb.2014.11.024
  • Larbi, L. O., Kaci, A., Houari, M. S. A., Tounsi, A. (2013). An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41:421–433. doi:10.1080/15397734.2013.763713
  • Li, S. R., Batra, R. C. (2006). Buckling of axially compressed thin cylindrical shells with functionally graded middle layer. Thin-Walled Structures 44:1039–1047. doi:10.1016/j.tws.2006.10.006
  • Li, S. R., Fu, X. H., Batra, R. C. (2010). Free vibration of three layered circular cylindrical shells with functionally graded middle layer. Mechanics Research Communications 37:577–580. doi:10.1016/j.mechrescom.2010.07.006
  • Liu, M. F., Chang, T. P., Wang, Y. H. (2011). Free vibration analysis of orthotropic rectangular plates with tapered varying thickness and Winkler spring foundation. Mechanics Based Design of Structures and Machines 39:320–333. doi:10.1080/15397734.2011.543054
  • Luo, Z., Zhu, Y. P., Zhao, X. Y., Wang, D. Y. (2015). High-order vibrations’ dynamic scaling laws of distorted scaled models of thin-walled short cylindrical shells. Mechanics Based Design of Structures and Machines 43:514–534. doi:10.1080/15397734.2015.1044610
  • Malekzadeh, P., Farid, M., Zahedinejad, P., Karami, G. (2008). Three-dimensional free vibration analysis of thick cylindrical shells resting on two-parameter elastic supports. Journal of Sound and Vibration 313:655–675. doi:10.1016/j.jsv.2007.12.004
  • Naili, S., Oddou, C. (2000). Buckling of short cylindrical shell surrounded by an elastic medium. Journal of Applied Mechanics 67:212–214.
  • Najafov, A. M., Sofiyev, A. H., Ozyigit, P., Yucel, K. T. (2014). Vibration and stability of axially compressed truncated conical shells with functionally graded middle layer surrounded by elastic medium. Journal of Vibration and Control 20:303–320. doi:10.1177/1077546312461025
  • Paliwal, D. N., Pandey, R. K., Nath, T. (1996). Free vibrations of circular cylindrical shell on Winkler and Pasternak foundation. International Journal of Pressure Vessels and Piping 69:79–89. doi:10.1016/0308-0161(95)00010-0
  • Pasternak, P. L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants. Gosuedarstvennoe Izadatelstvo Literatim Po Stroitelstvu I Arkhitekture 1:1–56. (in Russian)
  • Pitakthapanaphong, S., Busso, E. P. (2002). Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids 50:695–6716. doi:10.1016/s0022-5096(1)00105-3
  • Reddy, J. N., Liu, C. F. (1985). A higher-order shear deformation-theory of laminated elastic shells. International Journal of Engineering Science 23:319–330. doi:10.1016/0020-7225(85)90051-5
  • Shah, A. G., Mahmood, T., Naeem, M. N., Iqbal, Z., Arshad, S. H. (2010). Vibrations of functionally graded cylindrical shells based on elastic foundations. Acta Mechanica 211:293–307. doi:10.1007/s00707-009-0225-9
  • Shahrjerdi, A., Bayat, M., Mustapha, F., Sapuan, S. M., Zahari, R. (2010). Second-order shear deformation theory to analyze stress distribution for solar functionally graded plates. Mechanics Based Design of Structures and Machines 38:348–361. doi:10.1080/15397731003744603
  • Shariyat, M., Alipour, M. M. (2013). Semi-analytical consistent zigzag-elasticity formulations with implicit layer-wise shear correction factors for dynamic stress analysis of sandwich circular plates with FGM layers. Composites Part B: Engineering 49:43–64. doi:10.1016/j.compositesb.2013.01.001
  • Shen, H. S. (2009). Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. Boca Raton, FL: CRC Press.
  • Shen, H. S. (2012). Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Composite Structures 94:1144–1154. doi:10.1016/j.compstruct.2011.11.012
  • Sheng, G. G., Wang, X. (2008). Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. Journal of Reinforced Plastics and Composites 27:117–134. doi:10.1177/0731684407082627
  • Sobhani, A. B., Zeighami, A., Rafiee, M., Yas, M. H., Wahab, M. A. (2013). 3-D thermo-elastic solution for continuously graded isotropic and fiber-reinforced cylindrical shells resting on two-parameter elastic foundations. Journal of Applied Mathematics and Modeling 37:6556–6576. doi:10.1016/j.apm.2013.01.005
  • Sobhy, M. (2013). Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Composite Structures 99:76–87. doi:10.1016/j.compstruct.2012.11.018
  • Sofiyev, A. H. (2007). Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads. Mechanics Research Communications 27:365–391.
  • Sofiyev, A. H. (2010). The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations. International Journal of Pressure Vessels and Piping 87:753–761. doi:10.1016/j.ijpvp.2010.08.012
  • Sofiyev, A. H. (2014). The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure. Composite Structures 117:124–134. doi:10.1016/j.compstruct.2014.06.025
  • Taibi, F. Z., Benyoucef, S., Tounsi, A., Bouiadjra, R. B., Bedia, E. A. A., Mahmoud, S. R. (2014). A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations. Journal of Sandwich Structures and Materials 17:99–129. doi:10.1177/1099636214554904
  • Thai, C. H., Ferreira, A. J. M., Bordas, S. P. A., Rabczuk, T., Xuan, H. N. (2014). Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics - A: Solids 43:89–108. doi:10.1016/j.euromechsol.2013.09.001
  • Timarci, T., Soldatos, K. P. (2000). Vibrations of angle-ply laminated circular cylindrical shells subjected to different sets of edge boundary conditions. Journal of Engineering Mathematics 37:211–230.
  • Tornabene, F. (2011). Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler–Pasternak elastic foundations. Composite Structures 94:186–206.
  • Tornabene, F., Fantuzzi, M., Bacciocchi, M. (2014). Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories. Composites Part B: Engineering 67:490–509. doi:10.1016/j.compositesb.2014.08.012
  • Tornabene, F., Fantuzzi, N., Viola, E., Batra, R. C. (2015). Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Composite Structures 119:67–89. doi:10.1016/j.compstruct.2014.08.005
  • Wang, X. Z., Shen, H. S. (2013). Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments. Ocean Engineering 57:99–110. doi:10.1016/j.oceaneng.2012.09.004
  • Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M., Kawasaki, T. (2004). Biocompatibility of materials and development to functionally graded implant for bio-medical application. Composites Science and Technology 64:893–908. doi:10.1016/j.compscitech.2003.09.005
  • Wu, C. P., Kuo, C. H. (2013). A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders. Applied Mathematical Modelling 37:916–938. doi:10.1016/j.apm.2012.03.025
  • Yaghoobi, H., Yaghoobi, P. (2013). Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach. Meccanica 48:2019–2035. doi:10.1007/s11012-013-9720-0
  • Ye, T., Jin, G., Shi, S., Ma, X. (2014). Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations. International Journal of Mechanical Sciences 84:120–137. doi:10.1016/j.ijmecsci.2014.04.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.