167
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Design and development of planar reconfigurable motion generators

&
Pages 426-439 | Received 13 Jan 2015, Accepted 17 Sep 2015, Published online: 26 May 2016

References

  • Ahmad, A., Waldron, K. J. (1979). Synthesis of adjustable planar 4-bar mechanisms. Mechanism & Machine Theory 14(6):405–411.
  • Bhattacharya, S., Bepari, B., Bhaumik, S. (2014). Ipmc-actuated compliant mechanism-based multifunctional multifinger microgripper. Mechanics Based Design of Structures and Machines 42(3):312–325.
  • Chanekar, P. V., Ghosal, A. (2013). Optimal synthesis of adjustable planar four-bar crank-rocker type mechanisms for approximate multi-path generation. Mechanism & Machine Theory 69:263–277.
  • Chang, C.-F. (2001). Synthesis of adjustable four-bar mechanisms generating circular arcs with specified tangential velocities. Mechanism & Machine Theory 36(3):387–395.
  • Chuenchom, T. (1993). Kinematic Synthesis of Adjustable Robotic Mechanisms, PhD thesis. USA: The University of Michigan.
  • Chuenchom, T., Kota, S. (1997). Synthesis of programmable mechanisms using adjustable dyads. Journal of Mechanical Design, Transactions of the ASME 119(2):232–237.
  • Du, R., Guo, W. (2003). The design of a new metal forming press with controllable mechanism. Journal of Mechanical Design, Transactions of the ASME 125(3):582–592.
  • Erdman, A., Sandor, G. N., Kota, S. (2001). Mechanism Design: Analysis and Synthesis, 4th ed., Vol. 1. Englewood Cliffs, NJ: Prentice Hall.
  • Grimske, S., Kong, N., Rhlig, B., Wulfsberg, J. P. (2014). Square foot manufacturing a modular and mutable desktop machine tool system. Mechanics Based Design of Structures and Machines 42(3):386–397.
  • Hong, B., Erdman, A. G. (2005). A method for adjustable planar and spherical four-bar linkage synthesis. Journal of Mechanical Design 127(3):456–463.
  • Inertia Dynamics, Altra Industrial Motion (2013a). Flange Mounted Brakes - Type FB. http://www.idicb.com/fb.asp (accessed Mar 2013).
  • Inertia Dynamics, Altra Industrial Motion (2013b). Spring Applied Brakes - SAB. http://www.idicb.com/sab.asp (accessed Jan 2013).
  • Kim, S. (1998). Adjustable Manipulability of Closed-Chain Mechanisms through Joint Freezing and Joint Unactuation. IEEE International Conference on Robotics and Automation, 1998. Proceedings 1998. (Vol. 3). IEEE, 2627–2632.
  • Kim, S., Choi, J. G. (1999). Improved Task Adaptability of Open/Closed Chain Mechanisms through Continuous Joint Mode Conversion. IEEE International Conference on Intelligent Robots and Systems (Vol. 3), Kyongju, South Korea, 1380–1385.
  • Kota, S. (1991). ARMs for low-cost semi-flexible automation. In: Robotics Today, volume 4(1). The Netherlands: Robotics Today, 1–2.
  • Kota, S., Chuenchom, T. (1990). Adjustable robotic mechanisms for low-cost automation. American Society of Mechanical Engineers, Design Engineering Division(Publication) DE, 26:297–306.
  • Kota, S., Erdman, A. (1997). Motion control in product design. Mechanical Engineering 119(8):74–77.
  • Krovi, V., Ananthasuresh, G. K., Kumar, V. (2002). Kinematic and kinetostatic synthesis of planar coupled serial chain mechanisms. Journal of Mechanical Design, Transactions of the ASME 124(2):301–312.
  • Kuo, C. H., Dai, J. S., Yan, H. S. (2009). Reconfiguration Principles and Strategies for Reconfigurable Mechanisms. ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, 2009. ReMAR 2009, 1–7.
  • Larochelle, P., Venkataramanujam, V. (2013). A New Concept for Reconfigurable Planar Motion Generators. Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE), San Diego, CA. ASME Press. Paper # IMECE2013-62571.
  • Li, S., Dai, J. (2012). Structure synthesis of single-driven metamorphic mechanisms based on the augmented assur groups. Journal of Mechanisms and Robotics 4(3): 031004–031004–8.
  • McGovern, J. F., Sandor, G. N. (1973a). Kinematic synthesis of adjustable mechanisms - 2. Path generation. Journal of Engineering for Industry 95 Ser B(2):423–429.
  • McGovern, J. F., Sandor, G. N. (1973b). Kinematic synthesis of adjustable mechanisms - 1. Function generation. Journal of Engineering for Industry 95 Ser B(2):417–422.
  • Muscle Corporation, (2009). Cool muscle AC servo system (Model: CM-1-C-23L20). http://www.musclecorp.com/english/ (accessed Mar 2012).
  • Naik, D., Amarnath, C. (1989). Synthesis of adjustable four-bar function generators through five bar loop closure equations. Mechanism & Machine Theory 24(6):523–526.
  • Norton, R. L. (2008). Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. Boston, MA: McGraw-Hill.
  • Peng, C., Sodhi, R. S. (2010). Optimal synthesis of adjustable mechanisms generating multi-phase approximate paths. Mechanism & Machine Theory 45(7):989–996.
  • Pennock, G., Israr, A. (2009). Kinematic analysis and synthesis of an adjustable six-bar linkage. Mechanism & Machine Theory 44(2):306–323.
  • Pololu Corporation, (2013). Pololu 5V Step-Up Voltage Regulator U3V12F5. http://www.pololu.com/catalog/product/2115 (accessed May 2013).
  • PTC Inc., (2013). PTC Creo Parametric. http://www.ptc.com/product/creo/parametric (accessed Jul 2013).
  • Russell, K., Sodhi, R. S. (2003). Kinematic synthesis of adjustable rssr-ss mechanisms for multi-phase finite and multiply separated positions. Journal of Mechanical Design, Transactions of the ASME 125(4):847–853.
  • Russell, K., Sodhi, R. S. (2005a). On the design of slider-crank mechanisms. Part II: Multi-phase path and function generation. Mechanism & Machine Theory 40(3):301–317.
  • Russell, K., Sodhi, R. S. (2005b). On the design of slider-crank mechanisms. Part I: Multi-phase motion generation. Mechanism & Machine Theory 40(3):285–299.
  • SA, A. (2013). Arduino Leonardo Microcontroller Board. http://arduino.cc/en/Main/ArduinoBoardLeonardo (accessed Jan 2013).
  • Sekar, M., Han, Y. S. (2014). Design and implementation of high-performance real-time free-form NURBS interpolator in micro cnc machine tool. Mechanics Based Design of Structures and Machines 42(3):296–311.
  • Shoup, T. (1984). The design of an adjustable, three dimensional slider crank mechanism. Mechanism & Machine Theory 19(1):107–111.
  • Soh, G. S., McCarthy, J. M. (2009). Parametric design of a spherical eight-bar linkage based on a spherical parallel manipulator. Journal of Mechanisms and Robotics 1(1):1–8.
  • Soong, R.-C., Wu, S.-L. (2009). Design of variable coupler curve four-bar mechanisms. Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao 30(3):249–257.
  • Tao, D. (1964). Applied Linkage Synthesis. Reading, MA: Addison-Wesley.
  • Tao, D., Krishnamoorthy, S. (1977a). Linkage mechanism adjustable for variable symmetrical coupler curves with a double point. Mechanism & Machine Theory 13(6):585–591.
  • Tao, D., Krishnamoorthy, S. (1977b). Linkage mechanism adjustable for variable coupler curves with cusps. Mechanism & Machine Theory 13(6):577–583.
  • The MathWorks, Inc. (2013a). Arduino Support from MATLAB. http://www.mathworks.com/hardware-support/arduino-matlab.html (accessed Mar 2013).
  • The MathWorks Inc., (2013b). MATLAB Version 7.14 (R2012a). http://www.mathworks.com/ (accessed Nov 2012).
  • Venkataramanujam, V. (2014). A New Class of Mechanical Devices for Multi-Phase Motion Generation. PhD thesis, USA: Florida Institute of Technology.
  • Venkataramanujam, V., Larochelle, P. (2014). Analysis of Planar Reconfigurable Motion Generators. Proceedings of the ASME International Design and Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014), Buffalo, NY. ASME Press. Paper # DETC2014-34242.
  • Zhou, H., Ting, K. -L. (2002). Adjustable slider-crank linkages for multiple path generation. Mechanism & Machine Theory 37(5):499–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.