168
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams

&
Pages 1-11 | Received 21 Jan 2015, Accepted 24 Nov 2015, Published online: 07 Jun 2016

REFERENCES

  • Anthoine, A. (2000). Effect of couple-stresses on the elastic bending of beams. International Journal of Solids and Structures 37(7):1003–1018. doi:10.1016/s0020-7683(98)00283-2.
  • Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., Ahmadian, M. T. (2011a). Investigation of the size effects in Timoshenko beams based on the couple stress theory. Archive of Applied Mechanics 81(7):863–874. doi:10.1007/s00419-010-0452-5.
  • Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., Ahmadian, M. T. (2011b). The modified couple stress functionally graded Timoshenko beam formulation. Materials and Design 32(3):1435–1443. doi:10.1016/j.matdes.2010.08.046.
  • Asghari, M., Taati, E. (2013). A size-dependent model for functionally graded micro-plates for mechanical analyses. Journal of Vibration and Control 19(11):1614–1632. doi:10.1177/1077546312442563.
  • Bishop, R. E. D. (1959). The vibration of rotating shafts. Journal of Mechanical Engineering and Sciences 1(1):50–65.
  • Büttgenbach, S., Burisch, A., Hesselbach, J. (2011). Design and Manufacturing of Active Microsystems. London: Springer.
  • Cheng, J., Xu, H., Yan, A. (2006). Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect. Mechanics Based Design of Structures and Machines 34(1):25–47. doi:10.1080/15367730500501587.
  • Curti, G., Raffa, F. A., Vatta, F. (1992). An analytical approach to the dynamics of rotating shafts. Meccanica 27(4):285–292. doi:10.1007/bf00424368.
  • Davim, J. P., Jackson, M. J. (2010). Nano and Micromachining. London: Wiley.
  • Dimentberg, M. F. (2005). Transverse vibrations of rotating shafts: Probability density and first-passage time of whirl radius. International Journal of Non-Linear Mechanics 40:1263–1267. doi:10.1016/j.ijnonlinmec.2005.05.009.
  • Epstein, A. H., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K.-S., Ehrich, F. E., Gauba, G., Ghodssi, R., Groshenry, C., Jacobson, S., Lang, J. H., Lin, C.-C., Mehra, A., Mur Miranda, J. O., Nagle, S., Piekos, E., Orr, D. J., Schmidt, M. A., Shirley, G., Spearing, S. M., Tan, C. S., Tzeng, Y.-S., Waitz, I. A. (1997). Power MEMS and Microengines. IEEE Transducers ‘97 Conference, June 16–19, Chicago, IL, U.S.A.
  • Eraslan, A. N., Akis, T. (2006). The stress response of partially plastic rotating FGM hollow shafts: Analytical treatment for axially constrained ends. Mechanics Based Design of Structures and Machines 34(3):241–260. doi:10.1080/15397730600779285.
  • Farshidianfar, A., Soheili, S. (2009). Effects of rotary inertia and gyroscopic momentum on the flexural vibration of rotating shafts using hybrid modeling. Trans B: Mechanical Engineering of Sharif University of Technology 16(1):75–86.
  • Fréchette, L. G., Lee, C., Arslan, S., Liu, Y.-C. (2003). Preliminary Design of a MEMS Steam Turbine Power Plant-on-a-Chip. 3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS’03), December 4–5, Makuhari, Japan.
  • Hosseini, S. A. A., Khadem, S. E. (2009). Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mechanism and Machine Theory 44:272–288. doi:10.1016/j.mechmachtheory.2008.01.007.
  • Jivkov, V. S., Zahariev, E. V. (2014). Stability and nonstationary vibrations of rotor in elastoviscous field. Mechanics Based Design of Structures and Machines 42(1):35–55. doi:10.1080/15397734.2013.814545.
  • Kahrobaiyan, M. H., Asghari, M., Ahmadian, M. T. (2014). A Timoshenko beam element based on the modified couple stress theory. International Journal of Mechanical Sciences 79:75–83. doi:10.1016/j.ijmecsci.2013.11.014.
  • Ke, L.-L., Wang, Y.-S. (2011). Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Composite Structures 93:342–350. doi:10.1016/j.compstruct.2010.09.008.
  • Khadem, S. E., Shahgholi, M., Hosseini, S. A. A. (2010). Primary resonances of a nonlinear in-extensional rotating shaft. Mechanism and Machine Theory 45:1067–1081. doi:10.1016/j.mechmachtheory.2010.03.012.
  • Khanna, R. (2003). MEMS fabrication perspectives from the MIT microengine project. Surface and Coatings Technology 163–164:273–280. doi:10.1016/s0257-8972(02)00637-0.
  • Kong, S., Zhou, S., Nie, Z., Wang, K. (2008). The size-dependent natural frequency of Bernoulli–Euler micro-beams. International Journal of Engineering Science 46:427–437. doi:10.1016/j.ijengsci.2007.10.002.
  • Kurnik, W. (1994). Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dynamics 5:39–52.
  • Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., Tong, P. (2003). Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51:1477–1508. doi:10.1016/s0022-5096(03)00053-x.
  • Lang, J. H. (2009). Multi-Wafer Rotating MEMS Machines, Turbines, Generators, and Engines. London: Springer.
  • Lee, H. P., Tan, T. H., Leng, G. S. B. (1997). Dynamic stability of spinning beams with an unsymmetrical cross-section and distinct boundary conditions subjected to time-dependent spin speed. Mechanics of Structures and Machines 25(2): 179–200. doi:10.1080/08905459708905286.
  • McFarland, A. W., Colton, J. S. (2005). Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering 15:1060–1067. doi:10.1088/0960-1317/15/5/024.
  • Mustapha, K. B., Zhong, Z. W. (2012). Spectral element analysis of a non-classical model of a spinning micro beam embedded in an elastic medium. Mechanism and Machine Theory 53:66–85. doi:10.1016/j.mechmachtheory.2012.02.008.
  • Nayfeh, A. H., Pai, P. F. (2004). Linear and Nonlinear Structural Mechanics. New York: Wiley-Interscience.
  • Park, S. K., Gao, X.-L. (2006). Bernoulli–Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering 16:2355–2359. doi:10.1088/0960-1317/16/11/015.
  • Reddy, J. N. (2011). Micro structure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids 59:2382–2399. doi:10.1016/j.jmps.2011.06.008.
  • Schubert, D. (2012). Mems-Concept using Micro Turbines for Satellite Power Supply. Available at http://cdn.intechopen.com/pdfs/28485.pdf.
  • Senturia, S. D. (2002). Mircosystem Design. London: Kluwer Academic Publishers.
  • Sheu, G. J., Yang, S. M. (2005). Dynamic analysis of a spinning Rayleigh beam. International Journal of Mechanical Sciences 47:157–169. doi:10.1016/j.ijmecsci.2005.01.007.
  • Stolken, J. S., Evans, A. G. (1998). Microbend test method for measuring the plasticity length scale. Acta Materialia 46: 5109–5115. doi:10.1016/s1359-6454(98)00153-0.
  • Vatta, F., Vigliani, A. (2007). Asymmetric rotating shafts: An alternative analytical approach. Meccanica 42(2):207–210. doi:10.1007/s11012-006-9031-9.
  • Yang, F., Chong, A. C. M., Lam, D. C. C., Tong, P. (2002). Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39(10):2731–2743. doi:10.1016/s0020-7683(02)00152-x.
  • Zhang, D. J., Huston, R. L. (1996). On dynamic stiffening of flexible bodies having high angular velocity. Mechanics of Structures and Machines 24(3):313–329. doi:10.1080/08905459608905267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.