263
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Isogeometric analysis for the dynamic problem of curved structures including warping effects

ORCID Icon &
Pages 66-84 | Received 21 Sep 2016, Accepted 20 Dec 2016, Published online: 01 Feb 2017

References

  • Cazzani, A., Malagù, M., Turco, E. (2014). Isogeometric analysis of plane-curved beam. Mathematics and Mechanics of Solids 21(5):562–577, Epub ahead of print on April 20, 2014. doi:10.1177/1081286514531265
  • Cazzani, A., Malagù, M. Turco., Stochino, F. (2016). Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids 21(2):182–209. doi:10.1177/1081286515577043
  • Dabrowski, R. (1965). Warping torsion of curved box girders of non-deformable cross-section. Der Stahlbau 34:135–141.
  • Davis, P. J., Rabinowitz, P. (1975). Methods of numerical integration. New York: Academic Press.
  • Dikaros I. C. and Sapountzakis E. J., (2014). Generalized Warping Analysis of Composite Beams of an Arbitrary Cross Section by BEM. I: Theoretical Considerations and Numerical Implementation. Journal of Engineering Mechanics 140:04014062.
  • Dimitrakopoulos, E. G., Zeng, Q. (2015). A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges. Computers & Structures 149:43–60. doi:10.1016/j.compstruc.2014.12.002
  • El Fatmi, R., Ghazouani, N. (2011). Higher order composite beam theory built on Saint-Venant’s solution. Part-I: Theoretical developments. Composite Structures 93:557–566. doi:10.1016/j.compstruct.2010.08.024
  • Eurocode 3., (2004). Design of steel structures – Part 1.5: Plated structural elements. European Committee for Standardization, prEN 1993-1-5.
  • Eurocode 4., (2004a). Design of composite steel and concrete structures – Part 1.1: General rules and rules for buildings. European Committee for Standardization, prEN 1994-1-1.
  • Eurocode 4., (2004b). Design of composite steel and concrete structures – Part 2: General rules and rules for bridges. European Committee for Standardization, prEN 1994-2.
  • FEMAP for Windows., (2010). Finite element modeling and post-processing software. Help System Index Version 11.0.1.
  • Gendy, A. S., Saleeb, A. F. (1992). On the finite element analysis of the spatial response of curved beams with arbitrary thin-walled sections. Computers & Structures 44(3):639–652. doi:10.1016/0045-7949(92)90396-h
  • Ghazouani, N., El Fatmi, R. (2011). Higher order composite beam theory built on Saint-Venant’s solution. Part-II: Built-in effects influence on the behavior of end-loaded cantilever beams. Composite Structures 93:567–581. doi:10.1016/j.compstruct.2010.08.023
  • Huang, X. M., Huang, X. Y., Zhuo, W. D., Shang-Guan, P., Li, Y. (2012). Impact effect analysis for a continuous concrete curved bridge due to multi-vehicle loading. Journal of Shock and Vibration 24:137–142.
  • Hughes, T., Cottrell, J., Bazilevs, Y. (2009). Isogeometric analysis: Toward Integration of CAD and FEA. Chichester, UK: Wiley.
  • Ie, C. A., Kosmatka, J. B. (1992). On the analysis of prismatic beams using first-order warping functions. International Journal of Solids and Structures 29(7):879–891. doi:10.1016/0020-7683(92)90023-m
  • Jun, L., Guangwei, R., Jin, P., Xiaobin, L., Weiguo, W. (2014). Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mechanics Based Design of Structures and Machines 42(1):111–129. doi:10.1080/15397734.2013.846224
  • Katsikadelis, J. T. (2002). The analog equation method. A boundary – Only integral equation method for nonlinear static and dynamic problems in general bodies. Journal of Theoretical and Applied Mechanics 27:13–38. doi:10.2298/tam0227013k
  • Katsikadelis, J. T., Sapountzakis, E. J. (2002). A realistic estimation of the effective breadth of ribbed plates. International Journal of Solids and Structures 39:897–910. doi:10.1016/s0020-7683(01)00277-3
  • Kim, N., Yun, H. T., Kim, M. Y. (2004). Exact static element stiffness matrices for non-symmetric thin-walled structures. International Journal for Numerical Methods in Engineering 61:274–302. doi:10.1002/nme.1066
  • Kim, N. I. (2010). Shear and membrane locking-free thin-walled curved beam element based on assumed strain fields. Mechanics Based Design of Structures and Machines 38(3):273–299. doi:10.1080/15397731003670576
  • Koo, B., Ha, S. H., Kim, H. S., Cho, S. (2013). Isogeometric shape design optimization of geometrically nonlinear structures. Mechanics Based Design of Structures and Machines 41(3):337–358. doi:10.1080/15397734.2012.750226
  • Koo, K. K., Cheung, Y. K. (1989). Mixed variational formulation for thin-walled beams with shear lag. Journal of Engineering Mechanics ASCE 115:2271–2286. doi:10.1061/(asce)0733-9399(1989)115:10(2271)
  • Luu, A. T., Kim, N. I., Lee, J. (2015). NURBS-based isogeometric vibration analysis of generally laminated deep curved beams with variable curvature. Composite Structures 119:150–165. doi:10.1016/j.compstruct.2014.08.014
  • Mokos, V. G., Sapountzakis, E. J. (2011). Secondary torsional moment deformation effect by BEM. International Journal of Mechanical Sciences 53:897–909. doi:10.1016/j.ijmecsci.2011.08.001
  • Oñate, E. (2009). Structural analysis with the finite element method. Linear statics. Volume 1: Basis and solids, CIMNE: Barcelona, Spain: Springer
  • Pai, P. F. (2014). High-fidelity sectional analysis of warping functions, stiffness values and wave properties of beams. High-fidelity sectional analysis of warping functions, stiffness values and wave properties of beams 67:77–95. doi:10.1016/j.engstruct.2014.02.034
  • Piegel, L., Tiller, W. (1997). The NURBS book. Heidelberg, Berlin: Springer.
  • Reagan, S. W., Pilkey, W. D. (2002). Constrained torsion of prismatic bars. Finite Elements in Analysis and Design 38:909–919. doi:10.1016/s0168-874x(02)00084-7
  • Rosen, A., Abromovich, H. (1984). Galerkin method as a tool to investigate the planar and non-planar behaviour of curved beams. Computers & Structures 18:165–174. doi:10.1016/0045-7949(84)90092-0
  • Sapountzakis, E. J., Mokos, V. G. (2003). Warping shear stresses in nonuniform torsion of composite bars by BEM. Computer Methods in Applied Mechanics and Engineering 192:4337–4353. doi:10.1016/s0045-7825(03)00417-1
  • Sapountzakis, E. J., Tsiptsis, I. N. (2014). Quadratic B-splines in the analog equation method for the nonuniform torsional problem of bars. Acta Mechanica 225:3511–3534. doi:10.1007/s00707-014-1143-z
  • Sapountzakis, E. J., Tsiptsis, I. N. (2015). Generalized warping analysis of curved beams by BEM. Engineering Structures 100:535–549. doi:10.1016/j.engstruct.2015.06.038
  • Sapountzakis, E. J., Tsiptsis, I. N. (2016). B-splines in the analog equation method for the generalized beam analysis including warping effects. Computers & Structures,
  • Shi, Y., Xuan, J. M., Song, Y. F. (2009). Analysis of vehicle-bridge coupling vibration of continuous girder bridge under uneven deck. Bridge Construction 6:15–22.
  • Timoshenko, S., Woinowsky-Krieger, S. (1959). Theory of plates and shells. New York, NY: McGraw-Hill.
  • Tsipiras, V. J., Sapountzakis, E. J. (2012). Secondary torsional moment deformation effect in inelastic nonuniform torsion of bars of doubly symmetric cross section by BEM. International Journal of Non-Linear Mechanics 47:68–84. doi:10.1016/j.ijnonlinmec.2012.03.007
  • Vlasov, V. (1963). Thin-walled elastic beams. Jerusalem: Israel Program for Scientific Translations.
  • Wang, Y., Xu, Y., Luo, Z., Wu, H., Yan, L. (2016). Spatial finite element analysis for dynamic response of curved thin-walled box girder bridges. Spatial finite element analysis for dynamic response of curved thin-walled box girder bridges, Article ID 8460130 2016:1–8.
  • Wattanasakulpong, N., Chaikittiratana, A. (2014). On the linear and nonlinear vibration responses of elastically end restrained beams using DTM. Mechanics Based Design of Structures and Machines 42(2):135–150. doi:10.1080/15397734.2013.847778
  • Yoo, C. H. (1979). Matrix formulation of curved girders. Journal of the Engineering Mechanics Division ASCE 105:971–987.
  • Yoon, K. Y., Kang, Y. J., Choi, Y. J., Park, N. H (2004). Free vibration analysis of horizontally curved steel I-girder bridges. Thin-Walled Structures 43:679–699. doi:10.1016/j.tws.2004.07.020
  • Zhang, Y., Hou, Z. Li (2015). Torsional behaviour of curved composite beams in construction stage and diaphragm effects. Journal of Constructional Steel Research 108:1–10. doi:10.1016/j.jcsr.2015.01.021
  • Zhu, L., Zhao, Y., Wang, G. (2010). Exact solution for in-plane displacement of redundant curved beam. Structural Engineering and Mechanics 34(1):139–142. doi:10.12989/sem.2010.34.1.139
  • Zhu, Z., Zhanga, L., Zhenga, D., Caob, G. (2016). Free vibration of horizontally curved thin-walled beams with rectangular hollow sections considering two compatible displacement fields. Mechanics Based Design of Structures and Machines 44(4):354–371. doi:10.1080/15397734.2015.1075410

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.