443
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates

&
Pages 693-711 | Received 02 Apr 2017, Accepted 05 Mar 2018, Published online: 03 May 2018

References

  • Aydogdu, M. 2009. A new shear deformation theory for laminated composite plates. Composite Structures 89 (1):94–101. doi:10.1016/j.compstruct.2008.07.008.
  • Basset, A. B. 1890. On the extension and flexure of cylindrical and spherical thin elastic shells. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 181:433–80. doi:10.1098/rsta.1890.0007.
  • Cong, P. H., and N. D. Duc. 2016. Thermal stability analysis of eccentrically stiffened sigmoid-FGM plate with metal -ceramic -metal layers based on FSDT. Cogent Engineering 3 (1):1–15. doi:10.1080/23311916.2016.1182098.
  • Duc, N. D., and P. Hong Cong. 2014. Nonlinear postbuckling of an eccentrically stiffened thin FGM plate resting on elastic foundations in thermal environments. Thin-Walled Structures 75:103–12. doi:10.1016/j.tws.2013.10.015.
  • Duc, N. D., and Van Tung, H. 2011. Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations. Composite Structures 93 (11): 2874–2881.
  • Gupta, A., and M. Talha. 2015. Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences 79:1–14.
  • Gupta, A., and M. Talha. 2016. An assessment of a non-polynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections. Composites Part B 107:141–61.
  • Gupta, A., and M. Talha. 2018. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. International Journal of Structural Stability and Dynamics 18 (1):1–31. doi:10.1142/s021945541850013x.
  • Hui, D., and A. W. Leissa. 1983. Effects of geometric imperfections on vibrations of biaxially compressed rectangular flat plates. Journal of Applied Mechanics 50 (4a):750.
  • Kant, T., and K. Swaminathan. 2001. Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory. Composite Structures 53:73–85. doi:10.1016/s0263-8223(00)00180-x.
  • Kapania, R. K., and T. Y. Yang. 1987. Buckling, Postbuckling, and Nonlinear vibrations of imperfect plates. AIAA Journal 25 (10):1338–1346.
  • Karama, M., K. S. Afaq, and S. Mistou. 2009. A new theory for laminated composite plates. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223 (2):53–62.
  • Kirchhoff, G. R. 1850. Uber das gleichgewicht und die bewegung einer elastischen scheibe. Journal für Die Reine und Angewandte Mathematik (Crelles Journal) 40:51–88.
  • Magnucka-Blandzi, E. 2010. Non-linear analysis of dynamic stability of metal foam circular plate. Journal of Theoretical and Applied Mechanics 48 (1):207–17.
  • Malekzadeh, P., M. R. Golbahar Haghighi, and A. Alibeygi Beni. 2012. Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations. Meccanica 47 (2):321–33. doi:10.1007/s11012-011-9436-y.
  • Matsunaga, H. 2008. Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite Structures 82 (4):499–512. doi:10.1016/j.compstruct.2007.01.030.
  • Mechab, I., B. Mechab, S. Benaissa, B. Serier, and B. B. Bouiadjra. 2016. Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38 (8): 2193–2211, 1–19.
  • Mindlin, R. D. 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME Journal of Applied Mechanics 18:31–38.
  • Muradova, A. D., M. Kurutz, and G. E. Stavroulakis. 2009. Buckling simulation of a plate embedded in a unilaterally supported environment. Mechanics Based Design of Structures Machines 37 (3):349–70. doi:10.1080/15397730902938316.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, C. M. C. Roque, M. Cinefra, R. M. N. Jorge, and C. M. M. Soares. 2012. A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B: Engineering 43 (2):711–25.
  • Pandya, B. N., and T. Kant. 1988. Finite element analysis of laminated composite plates using a higher-order displacement model. Composites Science and Technology 32 (2):137–55. doi:10.1016/0266-3538(88)90003-6.
  • Parhi, A., and B. N. Singh. 2014. Stochastic response of laminated composite shell panel in hygrothermal environment. Mechanics Based Design of Structures and Machines 42 (4):454–82. doi:10.1080/15397734.2014.888006.
  • Rao, L. B., and C. K. Rao. 2015. Buckling of elastic circular plates with an elastically restrained edges against rotation and internal elastic ring support. Mechanics Based Design of Structures and Machines 51 (4):480–88. doi:10.1080/15397734.2010.485297.
  • Reddy, J. N. 1984. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures 20 (9):881–96. doi:10.1016/0020-7683(84)90056-8.
  • Reissner, E. 1945. The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics 12:68–77.
  • Rodrigues, J. D., C. M. C. Roque, and A. J. M. Ferreira. 2013. An improved meshless method for the static and vibration analysis of plates. Mechanics Based Design of Structures and Machines 41 (1):21–39. doi:10.1080/15397734.2012.680348.
  • Shahrjerdi, A., M. Bayat, F. Mustapha, S. M. Sapuan, and R. Zahari. 2010. Second-order shear deformation theory to analyze stress distribution for solar functionally graded plates. Mechanics Based Design of Structures and Machines 38 (3):348–61. doi:10.1080/15397731003744603.
  • Shiau, L.-C., and S.-Y. Kuo. 2004. Thermal buckling of composite sandwich plates. Mechanics Based Design of Structures and Machines 32 (1):57–72. doi:10.1081/sme-120026590.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Talha, M., and B. N. Singh. 2011. Thermo-mechanical buckling analysis of finite element modeled functionally graded ceramic-metal plates. International Journal of Applied Mechanics 3 (4):867–80. doi:10.1142/s1758825111001275.
  • Talha, M., and B. N. Singh. 2014. Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments. Composite Structures 108 (1):823–33. doi:10.1016/j.compstruct.2013.10.013.
  • Touratier, M. 1991. An efficient standard plate theory. International Journal of Engineering Science 29 (8):901–16. doi:10.1016/0020-7225(91)90165-y.
  • Tsiptsis, I. N., and E. J. Sapountzakis. 2017. Isogeometric analysis for the dynamic problem of curved structures including warping effects. Mechanics Based Design of Structures and Machines 7734 (February):1–19. doi:10.1080/15397734.2016.1275974.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology 32 (1):111–20. doi:10.1016/j.ast.2013.12.002.
  • Yaghoobi, H., and A. Fereidoon. 2014. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory. Composites Part B: Engineering 62:54–64.
  • Yang, J., and X.-L. Huang. 2007. Nonlinear transient response of functionally graded plates with general imperfections in thermal environments. Computer Methods in Applied Mechanics and Engineering 196 (25–28):2619–30. doi:10.1016/j.cma.2007.01.012.
  • Zhao, X., Y. Y. Lee, and K. M. Liew. 2009. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures 90 (2):161–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.