149
Views
4
CrossRef citations to date
0
Altmetric
Articles

Geometrical nonlinear analysis of structures using residual variables

, &
Pages 215-233 | Received 03 Sep 2017, Accepted 05 Nov 2018, Published online: 20 Jan 2019

References

  • Alamatian, J., and M. Hosseini-Nejad Goshik. 2017. An efficient explicit framework for determining the lowest structural buckling load using dynamic relaxation method. Mechanics Based Design of Structures and Machines 45 (4):451–462. doi: 10.1080/15397734.2016.1238765.
  • Batoz, J. L., and G. Dhatt. 1979. Incremental displacement algorithms for nonlinear problems. International Journal for Numerical Methods in Engineering 14 (8):1262–1267. doi: 10.1002/nme.1620140811.
  • Bergan, P. G. 1980. Solution algorithms for nonlinear structural problems. Computers & Structures 12 (4):497–509. doi: 10.1016/0045-7949(80)90125-X.
  • Boutagouga, D., A. Gouasmia, and K. Djeghaba. 2010. Geometrically nonlinear analysis of thin shell by a quadrilateral finite element with in-plane rotational degrees of freedom. European Journal of Computational Mechanics 19 (8):707–724. doi: 10.3166/ejcm.19.707-724.
  • Chan, S. L. 1988. Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method. International Journal for Numerical Methods in Engineering 26 (12):2657–2669. doi: 10.1002/nme.1620261206.
  • Crisfield, M. A. 1979. A faster modified Newton-Raphson iteration. Computer Methods in Applied Mechanics and Engineering 20 (3):267–278. doi: 10.1016/0045-7825(79)90002-1.
  • Crisfield, M. A. 1981. A fast incremental/iterative solution procedure that handles “snap-through”. Computers & Structures 13 (1):55–62. doi: 10.1016/0045-7949(81)90108-5.
  • Eriksson, A. 1989. On linear constraints for Newton–Raphson corrections and critical point searches in structural F. E. problems. International Journal for Numerical Methods in Engineering 28 (6):1317–1334. doi: 10.1002/nme.1620280607.
  • Eriksson, A. 1993. On improved predictions for structural equilibrium path evaluations. International Journal for Numerical Methods in Engineering 36 (2):201–220. doi: 10.1002/nme.1620360203.
  • Fafard, M., and B. Massicotte. 1993. Geometrical interpretation of the arc-length method. Computers & Structures 46 (4):603–615. doi: 10.1016/0045-7949(93)90389-U.
  • Feenstra, P. H., and J. C. J. Schellekens. 1991. Self-Adaptive solution algorithm for a constrained Newton-Raphson method. Delft, Netherlands: Delft University of Technology.
  • Forde, B. W. R., and S. F. Stiemer. 1987. Improved arc length orthogonality methods for nonlinear finite element analysis. Computers & Structures 27 (5):625–630. doi: 10.1016/0045-7949(87)90078-2.
  • Fried, I. 1984. Orthogonal trajectory accession to the nonlinear equilibrium curve. Computer Methods in Applied Mechanics and Engineering 47 (3):283–297. doi: 10.1016/0045-7825(84)90080-X.
  • Greco, M., F. A. R. Gesualdo, W. S. Venturini, and H. B. Coda. 2006. Nonlinear positional formulation for space truss analysis. Finite Elements in Analysis and Design 42 (12):1079–1086. doi: 10.1016/j.finel.2006.04.007.
  • Haisler, W. E., J. A. Stricklin, and J. E. Key. 1977. Displacement incrementation in non‐linear structural analysis by the self‐correcting method. International Journal for Numerical Methods in Engineering 11 (1):3–10. doi: 10.1002/nme.1620110103.
  • Hill, C. D., G. E. Blandford, and S. T. Wang. 1989. Post-buckling analysis of steel space trusses. Journal of Structural Engineering 115 (4):900–919. doi: 10.1061/(ASCE)0733-9445(1989)115:4(900).
  • Hsiao, K. M. 1987. Nonlinear analysis of general shell structures by flat triangular shell element. Computers & Structures 25(5):665–675. doi: 10.1016/0045-7949(87)90159-3.
  • Kondoh, K., and S. N. Atluri. 1985. Influence of local buckling on global instability: Simplified, large deformation, post-buckling analyses of plane trusses. Computers & Structures 21 (4):613–627. doi: 10.1016/0045-7949(85)90140-3.
  • Norris, C. H., J. B. Wilbur, and S. Utku. 1976. Elementary structural analysis. New York, NY: McGraw-Hill.
  • Papadrakakis, M. 1983. Inelastic post-buckling analysis of trusses. Journal of Structural Engineering 109 (9):2129–2147. doi: 10.1061/(ASCE)0733-9445(1983)109:9(2129).
  • Powell, G., and J. Simons. 1981. Improved iteration strategy for nonlinear structures. International Journal for Numerical Methods in Engineering 17 (10):1455–1467. doi: 10.1002/nme.1620171003.
  • Ramm, E. 1981. Strategies for tracing the nonlinear response near limit points. In Nonlinear finite element analysis in structural mechanics, ed. W. Wunderlich, E. Stein, and K. J. Bathe, 63–89. Berlin, Heidelberg: Springer.
  • Rezaee-Pajand, M., and M. Taghavian-Hakkak. 2006. Nonlinear analysis of truss structures using dynamic relaxation. International Journal of Engineering-Transactions B: Applications 19 (1):11–22.http://www.ije.ir/Vol19/No1/B/2-755.pdf.
  • Rezaiee-Pajand, M., and H. Afsharimoghadam. 2017. Optimization formulation for nonlinear structural analysis. International Journal of Optimization in Civil Engineering 7 (1):109–127.http://ijoce.iust.ac.ir/article-1-287-en.html.
  • Rezaiee-Pajand, M., and H. Afsharimoghadam. 2018. An incremental iterative solution procedure without predictor step. European Journal of Computational Mechanics 27 (1):58–87. doi: 10.1080/17797179.2018.1455028.
  • Rezaiee-Pajand, M., and J. Alamatian. 2008a. Implicit higher-order accuracy method for numerical integration in dynamic analysis. Journal of Structural Engineering 134 (6):973–985. doi: 10.1061/(ASCE)0733-9445(2008)134:6(973).
  • Rezaiee-Pajand, M., and J. Alamatian. 2008b. Nonlinear dynamic analysis by dynamic relaxation method. Structural Engineering and Mechanics 28 (5):549–570. doi: 10.12989/sem.2008.28.5.549.
  • Rezaiee-Pajand, M., and J. Alamatian. 2008c. Numerical time integration for dynamic analysis using a new higher order predictor-corrector method. Engineering Computations 25 (6):541–568. doi: 10.1108/02644400810891544.
  • Rezaiee-Pajand, M., and J. Alamatian. 2011. Automatic DR structural analysis of snap-through and snap-back using optimized load increments. Journal of Structural Engineering 137 (1):109–116. doi: 10.1061/(ASCE)0733-9445(2011)137:1(109).
  • Rezaiee-Pajand, M., M. Ghalishooyan, and M. Salehi-Ahmadabad. 2013a. Comprehensive evaluation of structural geometrical nonlinear solution techniques part I: Formulation and characteristics of the methods. Structural Engineering and Mechanics 48 (6):849–878. doi: 10.12989/sem.2013.48.6.849.
  • Rezaiee-Pajand, M., M. Ghalishooyan, and M. Salehi-Ahmadabad. 2013b. Comprehensive evaluation of structural geometrical nonlinear solution techniques part II: Comparing efficiencies of the methods. Structural Engineering and Mechanics 48 (6):879–914. doi: 10.12989/sem.2013.48.6.879.
  • Rezaiee-Pajand, M., M. Kadkhodayan, and J. Alamatian. 2012. Timestep selection for dynamic relaxation method. Mechanics Based Design of Structures and Machines 40 (1):42–72. doi: 10.1080/15397734.2011.599311.
  • Rezaiee-Pajand, M., and A. R. Naghavi. 2011. Accurate solutions for geometric nonlinear analysis of eight trusses. Mechanics Based Design of Structures and Machines 39 (1):46–82. doi: 10.1080/15397734.2010.515297.
  • Rezaiee-Pajand, M., and R. Naserian. 2015. Using residual areas for geometrically nonlinear structural analysis. Ocean Engineering 105:327–335. doi: 10.1016/j.oceaneng.2015.06.043.
  • Rezaiee-Pajand, M., and R. Naserian. 2016. Using more accurate strain for three-dimensional truss analysis. Asian Journal of Civil Engineering 17 (1):107–126.https://ajce.bhrc.ac.ir/Portals/25/PropertyAgent/2905/Files/6457/107.pdf.
  • Rezaiee-Pajand, M., and R. Naserian. 2017. Nonlinear frame analysis by minimization technique. International Journal of Optimization in Civil Engineering 7 (2):291–318.http://ijoce.iust.ac.ir/article-1-299-en.html.
  • Rezaiee-Pajand, M., and R. Naserian. 2018. Geometrical nonlinear analysis based on optimization technique. Applied Mathematical Modelling 53:32–48. doi: 10.1016/j.apm.2017.08.003.
  • Rezaiee-Pajand, M., and S. R. Sarafrazi. 2011. Nonlinear dynamic structural analysis using dynamic relaxation with zero damping. Computers & Structures 89 (13–14):1274–1285. doi: 10.1016/j.compstruc.2011.04.005.
  • Rezaiee-Pajand, M., H. R. Vejdani-Noghreiyan, and A. R. Naghavi. 2013c. Four new methods for finding structural critical points. Mechanics Based Design of Structures and Machines 41 (4):399–420. doi: 10.1080/15397734.2012.746917.
  • Riks, E. 1972. The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics 39 (4):1060–1065. doi: 10.1115/1.3422829.
  • Riks, E. 1979. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures 15 (7):529–551. doi: 10.1016/0020-7683(79)90081-7.
  • Ritto-Corrêa, M., and D. Camotim. 2008. On the arc-length and other quadratic control methods: Established, less known and new implementation procedures. Computers & Structures 86 (11–12):1353–1368. doi: 10.1016/j.compstruc.2007.08.003.
  • Rosen, A., and L. A. Schmit. 1979. Design‐oriented analysis of imperfect truss structures—part I—accurate analysis. International Journal for Numerical Methods in Engineering 14 (9):1309–1321. doi: 10.1002/nme.1620140905.
  • Rosen, A., and L. A. Schmit. 1980. Design oriented analysis of imperfect truss structures—part II—approximate analysis. International Journal for Numerical Methods in Engineering 15 (4):483–494. doi: 10.1002/nme.1620150402.
  • Saffari, H., M. J. Fadaee, and R. Tabatabaei. 2008. Nonlinear analysis of space trusses using modified normal flow algorithm. Journal of Structural Engineering 134 (6):998–1005. doi: 10.1061/(ASCE)0733-9445(2008)134:6(998).
  • Saffari, H., and I. Mansouri. 2011. Non-linear analysis of structures using two-point method. International Journal of Non-Linear Mechanics 46 (6):834–840. doi: 10.1016/j.ijnonlinmec.2011.03.008.
  • Shi, H., H. Salim, Y. Shi, and F. Wei. 2015. Geometric and material nonlinear static and dynamic analysis of space truss structures. Mechanics Based Design of Structures and Machines 43 (1):38–56. doi: 10.1080/15397734.2014.925808.
  • Tabatabaei, R., and H. Saffari. 2010. Large strain analysis of two-dimensional frames by the normal flow algorithm. Structural Engineering and Mechanics 36 (5):529–544. doi: 10.12989/sem.2010.36.5.529.
  • Tanaka, K., K. Kondoh, and S. N. Atluri. 1985. Instability analysis of space trusses using exact tangent-stiffness matrices. Finite Elements in Analysis and Design 1 (4):291–311. doi: 10.1016/0168-874X(85)90028-9.
  • Toklu, Y. C. 2004. Nonlinear analysis of trusses through energy minimization. Computers & Structures 82 (20–21):1581–1589. doi: 10.1016/j.compstruc.2004.05.008.
  • Torkamani, M. A. M., and J. H. Shieh. 2011. Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures. Engineering Structures 33 (12):3516–3526. doi: 10.1016/j.engstruct.2011.07.015.
  • Wempner, G. A. 1971. Discrete approximations related to nonlinear theories of solids. International Journal of Solids and Structures 7 (11):1581–1599. doi: 10.1016/0020-7683(71)90038-2.
  • Yang, Y. B., T. J. Lin, L. J. Leu, and C. W. Huang. 2008. Inelastic postbuckling response of steel trusses under thermal loadings. Journal of Constructional Steel Research 64 (12):1394–1407. doi: 10.1016/j.jcsr.2008.01.004.
  • Zienkiewicz, O. C. 1971. Incremental displacement in non‐linear analysis. International Journal for Numerical Methods in Engineering 3 (4):587–588. doi: 10.1002/nme.1620030412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.