200
Views
22
CrossRef citations to date
0
Altmetric
Articles

Nonlinear aeroelastic stability analysis of three-phase nano-composite plates

ORCID Icon
Pages 753-768 | Received 20 Jul 2018, Accepted 17 Apr 2019, Published online: 13 May 2019

References

  • Ansari, R., and R. Gholami. 2016. Nonlinear primary resonance of third-order deformable functionally graded nano-composite rectangular plates reinforced by carbon nanotubes. Composite Structures 154:707–723. doi:10.1016/j.compstruct.2016.07.023.
  • Arani, A. G., H. B. Zaeri, and E. Haghparast. 2016. Application of Halpin-Tsai method in modelling and size-dependent vibration analysis of CNTs/fiber/polymer composite microplates. Journal of Computational Applied Mechanics 47 (1):45–52.
  • Arefi, M., and A. H. S. Arani. 2018. Higher order shear deformation bending results of a magnetoelectricthermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669–692. doi:10.1080/15397734.2018.1434002.
  • Barari, A., R. Abdoul, F. Ghotbi, F. Farrokhzad, and D. D. Ganji. 2008. Variational iteration method and homotopy-perturbation method for solving different types of wave equations. Journal of Applied Sciences 8 (1):120–126.
  • Chang, T. P., C. Y. Hu, and K. C. Jane. 1998. Vibration analysis of delaminated composite plates under axial load. Mechanics Based Design of Structures and Machines 26 (2):195–218. doi:10.1080/08905459808945427.
  • Choudalakis, G., and A. D. Gotsis. 2009. Permeability of polymer/clay nano-composites: A review. European Polymer 45 (4):967–984. doi:10.1016/j.eurpolymj.2009.01.027.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–237. doi:10.1080/15397734.2017.1329020.
  • Ebbesen, T. W., and P. M. Ajayan. 1992. Large-scale synthesis of carbon nanotubes. Nature 358 (6383):220–222. doi:10.1038/358220a0.
  • Ebrahimi, F., and S. Habibi. 2018. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nano-composite plate resting on elastic foundations in hygrothermal environments. Mechanics of Advanced Materials and Structures 25 (5):425–438. doi:10.1080/15376494.2017.1285453.
  • Fazelzadeh, S. A., S. Pouresmaeeli, and E. Ghavanloo. 2015. Aeroelastic characteristic of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow. Computers Methods in Applied Mechanics and Engineering 285:714–729. doi:10.1016/j.cma.2014.11.042.
  • Ganapathi, M., and T. K. Varadan. 1995. Supersonic flutter of laminated curved panels. Defence Science Journal 45 (2):147–159.
  • Gong, Y., Y. J. Baik, C. P. Li, C. Byon, J. M. Park, and T. J. Ko. 2017. Experimental and modeling investigation on machined surfaces of HDPE-MWCNT polymer nano-composite. The International Journal of Advanced Manufacturing Technology 88 (1–4):879–885. doi:10.1007/s00170-016-8840-9.
  • He, J. H. 1999. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering 178 (3–4):257–262. doi:10.1016/S0045-7825(99)00018-3.
  • He, J. H. 2003. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computations 133:73–79. doi:10.1016/S0096-3003(01)00312-5.
  • Jane, K. C., and Y. C. Harn. 2000. Vibration of delaminated beam-plates with multiple delaminations under axial forces. Mechanics Based Design of Structures and Machines 28 (1):496–464. doi:10.1081/SME-100100611.
  • Kargarnovin, M. H., M. T. Ahmadian, and R. A. Jafari-Talookolaei. 2012. Dynamics of a delaminated Timoshenko beam subjected to a moving oscillatory mass. Mechanics Based Design of Structures and Machines 40 (2):218–240. doi:10.1080/15397734.2012.658504.
  • Ke, L. L., J. Yang, and S. Kitipornchai. 2010. Nonlinear free vibration of functionally graded nanotube-reinforced composite beams. Composite Structures 92 (3):676–683. doi:10.1016/j.compstruct.2009.09.024.
  • Kiani, Y. 2017. Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions. Composite Structures 159:368–381. doi:10.1016/j.compstruct.2016.09.079.
  • Kim, M., Y.-B. Park, O. I. Okoli, and C. Zhang. 2009. Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Composite Science and Technology 69 (3–4):335–342. doi:10.1016/j.compscitech.2008.10.019.
  • Lei, Z. X., L. W. Zhang, K. M. Liew, and J. L. Yu. 2014. Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Composite Structures 113:328–338. doi:10.1016/j.compstruct.2014.03.035.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–478. doi:10.1080/15397734.2016.1242079.
  • Liao, S.-J. 1995. An approximate solution not depending on small parameters: a special example. International Journal of Nonlinear Mechanics 30 (3):371–380. doi:10.1016/0020-7462(94)00054-E.
  • Liao, C. L., and Y. W. Sun. 1993. Flutter analysis of stiffened laminated composite plates and shells in supersonic flow. AIAA Journal 31 (10):1897–1905.
  • Malekzadeh, P., M. Dehbozorgi, and S. M. Monajjemzadeh. 2015. Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load. Science and Engineering of Composite Materials 22 (1):37–55.
  • Rafiee, M., X. Q. He, S. Mareishi, and K. M. Liew. 2014a. Modeling and stress analysis of smart CNTs/fiber/polymer multiscale plates. International Journal of Applied Mechanics 06 (03):1450025. doi:10.1142/S1758825114500252.
  • Rafiee, M., X. F. Liu, X. Q. He, and S. Kitipornchai. 2014b. Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. Journal of Sound and Vibration 333 (14):3236–3251. doi:10.1016/j.jsv.2014.02.033.
  • Rafiee, M., F. Nitzsche, and M. Labrosse. 2016. Rotating nano-composite thin-walled beams undergoing large deformation. Composite Structures 150:191–199. doi:10.1016/j.compstruct.2016.05.014.
  • Rafiee, M., F. Nitzsche, and M. R. Labrosse. 2018. Cross-sectional design and analysis of multiscale nanotubes-reinforced composite beams and blades. International Journal of Applied Mechanics 10 (03):1850032. (doi:10.1142/S1758825118500321.
  • Rahman, R., and A. Haque. 2013. Molecular dynamic simulation of graphene reinforced nano-composites for evaluating elastic constants. Procedia Engineering 56:789–794. doi:10.1016/j.proeng.2013.03.197.
  • Ribeiro, P. 2016. Non-local effects on the non-linear modes of vibration of carbon nano-tubes under electrostatic actuation. International Journal of Non-Linear Mechanics 87:1–20. doi:10.1016/j.ijnonlinmec.2016.07.007.
  • Selim, B. A., L. W. Zhang, and K. M. Liew. 2017. Impact analysis of CNT-reinforced composite plates based on Reddy’s higher-order shear deformation theory using an element-free approach. Composite Structures 170:228–242. doi:10.1016/j.compstruct.2017.03.026.
  • Shafiei, H., and A. Setoodeh. 2017. Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation. Steel and Composite Structures 24 (1):65–77. doi:10.12989/scs.2017.24.1.065.
  • Thostenson, E. T., and T. W. Chou. 2003. On the elastic properties of carbon nanotube-based composites: modelling and characterization. Journal of Physics D: Applied Physics 36 (5):573–582. doi:10.1088/0022-3727/36/5/323.
  • Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J. N. Reddy. 2017. Multiscale approach for three-phase CNT/polymer/fiber laminated nano-composite structures. Polymer Composites 40:E102–E126. doi:10.1002/pc.24520.
  • Venkatesh, G. S., A. Deb, and A. Karmarkar. 2012. Characterization and finite element modeling of montmorillonite/polypropylene nano-composites. Materials & Design 35:425–433. doi:10.1016/j.matdes.2011.09.038.
  • Yas, M. H., and N. Samadi. 2012. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping 98:119–128. doi:10.1016/j.ijpvp.2012.07.012.
  • Yazdi, A. A. 2015. Nonlinear flutter of laminated composite plates resting on nonlinear elastic foundations using homotopy perturbation method. International Journal of Structural Stability and Dynamics 15 (05):1450072. (15 pages). doi:10.1142/S0219455414500722.
  • Zhang, L. W. 2016. Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports. Journal of Modeling in Mechanics and Materials 1 (1):20160154.
  • Zhang, L. W., D. Huang, and K. M. Liew. 2015. An element-free IMLS-Ritz method for numerical solution of three-dimensional wave equations. Computer Methods in Applied Mechanics and Engineering 297:116–139. doi:10.1016/j.cma.2015.08.018.
  • Zhang, L. W., Z. X. Lei, and K. M. Liew. 2015. Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Composite Part B 75:36–46. doi:10.1016/j.compositesb.2015.01.033.
  • Zhang, L. W., W. H. Liu, and K. M. Liew. 2016. Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates. International Journal of Non-Linear Mechanics 86:122–132. doi:10.1016/j.ijnonlinmec.2016.08.004.
  • Zhang, L. W., Z. G. Song, and K. M. Liew. 2015. State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory. Composite Structures 134:989–1003. doi:10.1016/j.compstruct.2015.08.138.
  • Zhang, L. W., and L. N. Xiao. 2017. Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading. Composite Part B 122:219–230. doi:10.1016/j.compositesb.2017.03.041.
  • Zhang, L. W., P. Zhu, and K. M. Liew. 2014. Thermal buckling of functionally graded plates using a local Kriging meshless method. Composite Structures 108:472–492. doi:10.1016/j.compstruct.2013.09.043.
  • Zhu, P., L. W. Zhang, and K. M. Liew. 2014. Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation. Composite Structures 107:298–314. doi:10.1016/j.compstruct.2013.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.